A Multilevel Bayesian Framework for the Elaboration Phase
[*** An Internal Document for CAWG Discussion ***]

Paul S. Rosenbloom
Draft 8 of October 27, 2009

At the top level consider the elaboration phase as yielding an interpretation of

the current situation given what is known.

A. A Bayesian perspective is that you want to compute posterior probabilities
over a set of situation variables (S) given a set of evidence variables (E):
P(S|E).

1. This can be done directly via specification of P(S|E) or indirectly via
Bayes Law, as P(E|S)P(S)/P(E).

a. P(E|S) is called the likelihood, as it specifies the probability of the
evidence given the situation.

b. P(S) is the prior probability of the situation variables; i.e., their
probability before attending to the evidence.

c. P(E) is the probability of the evidence, and is considered as a
normalization constant since it doesn’t depend on the situation.

i. Sodropping the constant yields P(E|S)P(S).

2. Can view these two distinct ways of specifying the function, directly or
indirectly, as templates for the knowledge to be used in computing the
posterior.

a. The direct approach, using P(S|E), corresponds to a procedural
encoding of knowledge that directly derives situation variables from
evidence variables. Classical rules/productions are of this form.

b. The indirect approach, using P(E|S)P(S), corresponds to a declarative
encoding of knowledge, such as is provided by a category definition.
i. For example, in Anderson’s 1990 work on rational analysis (The

Adaptive Character of Thought), he derives a model of
categorization - the ability to determine the category of an object
and to predict its other attributes from a partial specification of its
attributes - that is based on the prior for the category, P(C), and
the likelihoods of each of the individual attributes given the
category: P(Ai|C).
a. This actually turns out to be naive Bayes, although it doesn’t
appear to have been recognized at the time.

c. Also maps onto distinction between discriminative
(direct/procedural) and generative (indirect/declarative) learning?

3. This suggests it might be reasonable to limit the expressibility of memory
to a simple-yet-general conditional form that is sufficient to represent
priors, likelihoods, and posteriors.

a. Or, in other words, a single general form that covers both procedural
and declarative memory.

b. Rather than a full probabilistic logic, such as Markov logic, or even
“whatever forms of knowledge with which you can
efficiently/boundedly compute in graphs.”

B. Butitisn’t logically necessary to limit these notions to their strictly
probabilistic interpretations. In general, can think, at least metaphorically, of
the elaboration phase as computing some form of a posterior interpretation
of a situation based on generalized notions of partial posteriors (e.g., rules),
priors, likelihoods, and evidence.

C. Implementation of this idea currently involves three levels rather than the
two initially imagined (i.e., the implementation and architecture levels). From
the bottom up, these are:

1. Graph: Summary-product algorithm over continuous, N dimensional,
region-based, arrays

2. Pattern: Structuring of graph into a working memory (WM) of
(ground/propositional) instances/evidence and a long-term memory
(LTM) of (variablized/first-order) patterns/conditionals
a. WM/evidence is compiled in factor functions in the graph level and

conditionals are compiled into further variable and factor nodes

3. Genre: Encoding of procedural, semantic and episodic knowledge
a. Thislevel is not strictly needed for a Bayesian elaboration phase, but

starts to get at how it is exploited to yield a range of architectural
capabilities.

b. The genre level consists of knowledge encoded in evidence and
conditionals plus a setting of SUM versus MAX in some cases

D. Graphical models are providing an interesting combination of breadth of
applicability with constraint on how the breadth is realized.

1. The more constraint there is, the more this effort takes the form of the
development of a particular architecture as opposed to the creation of a
general/neutral implementation level for architectures.

2. My current approach is to explore a range of architectural capabilities
while heading in the general direction of a hybrid (freely mixing
cognitive/symbolic and perceptual-motor/signal processing within the
inner loop), mixed (symbolic reasoning under uncertainty) variant of
Soar 9.

a. Possibly with additional capabilities when feasible, such as MDPs.

I[I. The graph level
A. Based on factor graphs over continuous variables.
1. Consisting of variable and factor nodes with processing via the summary
product algorithm

w y
u I X : Z
@ (1@ [H—@—1{]

f1 /2 /3

2. There is nothing about this level that is either inherently symbolic or
probabilistic/Bayesian.

. Variable nodes

1. Represent one or more pattern variables
2. Compute point-wise products of incoming messages from associated
factor nodes to generate outgoing messages to factor nodes
a. Can be thought of as combining constraints from associated factors
Factor nodes
1. Represent functions on pattern(/rule) variables
2. Compute point-wise products of incoming messages from variable nodes
with factor’s function and summarize - via summation/integration or
maximization - out all pattern variables not used in variable nodes to
generate messages back to them
3. Maps pattern variable names when variable nodes use different name
spaces but some of the variables must be equal across these spaces.
. Each message and factor function is represented as a continuous function
over an N dimensional (continuous) space
1. Each dimension represents one or more equivalent pattern variables
a. When there are multiple, each comes from a different variable node,
and keep them equal by the corresponding dimension of the factor
node maintaining a list of such variables, and each mapping to that
dimension when computing products
2. A message/function is currently approximated as a piecewise linear
function based on an N dimensional array of rectilinear regions in which
each region has an associated N dimensional linear function
3. In general, there are many ways to consider
representing such functions — which will be
a topic for a later session - but the criteria
for a good representation are:
a. Compactness in representing functions of
interest.
b. Closure over the operations that need to
be performed.
i. Product of functions
ii. Summation/Integration over dimensions of a function
iii. Maximization over dimensions of a function
iv. Changing the value of the function over a region of the domain

0

2+.1x+.3y

C.

Efficiency of execution of the operations.

4. With respect to the criteria, the current implementation has the following
properties:

a.

It is compact to the extent that the value of nearby elements can be
captured via a single N-dimensional linear function. Having either
very squiggly value curves or many isolated symbols leads to
fragmentation.
i. However, even when there is a small set of specified regions, the
complementary set of regions can become unwieldily large.
a. May need to enable implicit/default representation of
complementary regions.
Closure
i. Closed over summation and changing of values.
ii. Product yields quadratic results that must be reapproximated as
linear functions.
iii. Maximization yields new piecewise linear functions, but the
partitions it requires need not be rectilinear.
a. Have implemented maximization with reapproximation to
maintain rectilinear regions.
b. Longer term it would appear to imply a need for regions that
are convex polytopes (i.e.,, N dimensional polygons).

5. Exploring shifting to a piecewise log-linear representation

a.
b.

Ln(F(xy,z)) = A+ Bx + Cy + Dz (or F(x,,z) = eA+Bx+(y+Dz)

Yields a patchwork of exponentials rather than lines.

i. Facilitates representing things like exponential decay along a
temporal dimension.

Appears to be closed under both integral and product (and max, but

issues here not yet completely understood).

Better two-region approximation to Gaussian’s based on back-to-back

exponentials rather than pyramids.

[II. The pattern level

At this level, the graph is organized into a working memory (WM) and a long-

term memory (LTM) via a compiler that converts conditional patterns and

evidence into appropriate graph structures

Working memory

1. Traditionally viewed as a short-term, limited capacity store of active
information.

A.

a.

b.

Contains ground instances rather than variablized patterns, implying
a match process rather than full unification
In Soar, structured as object-attribute-value triples rooted in states
i. (state sl "operator ol)
ii. Corresponds to a sparse three dimensional Boolean array in graph
a. One dimension each for object, attribute and value
b. Domains of dimensions/variables are constants and ids

c. Although Soar 9 does have an increasing number of special purpose
WM sub-regions for interacting with the outside world and various
LTMs.

2. Discrete numeric data (e.g., integers) and symbols are represented by
discretizing the underlying continuous space along a dimension

a. Integers (:discrete t :numeric t) correspond to appropriate
unit intervals
i. For example, ‘1’ maps onto the region [1,2>.

b. Symbolic values (:discrete t :numeric nil) apply arbitrary
labels to unit intervals
i. For example, red may correspond to [30,31>.

ii. Assumes the need for a symbol table.

c. The initial implementation followed Soar’s approach of
undifferentiated variables structured into triples but, with such an
approach, arbitrary mixing of numeric and symbolic data along a
single dimension can yield representational conflicts

d. For this reason, and because of issues where need to be able to
identify which values of a variable are competing, and because it
should improve efficiency to have related items clustered along a
dimension, have introduced types on dimensions/variables and have
structured combinations of them into predicates
i. Tried predicates corresponding to objects rather than triples, but

this was problematic when dealing with partial information about
objects, so switched to predicates corresponding to attributes
a. Type examples:

(new-type ‘color :constants ‘(silver brown white))
Automatically defaults to :discrete t :numeric nil :min 0 :max 3

(new-type ‘weight :numeric t :min 0 :max 500)
Automatically defaults to :discrete nil

b. Predicate example:
(predicate ‘color :arguments ‘((id id) (value color)))

ii. The result is rather like Alchemy’s representation at this level
3. Inthe Bayesian interpretation of the elaboration cycle, WM is the natural
home for evidence.

a. Evidence is hard-and-fast/non-probabilistic knowledge specifying
particular known values (groundings) for variables (although it is
possible to add noise models).

i. Priors, likelihoods and posteriors are all instead probabilistic
patterns over sets of values.

b. Could in fact conceive of WM as containing only evidence if willing to
extend the concept of evidence to include the o-supported results of
operator applications.

I.

[-supported results of elaborations will be discussed shortly.

c. One way to represent evidence in a graph is as a factor node’s
function, which is how WM is represented here

I.

There is a factor node for each predicate that stores its evidence

a. WM is fragmented, and possibly even localized, across these
nodes

b. Should easily support specialized WM regions for perception
and other purposes.

d. One question that has caused me continual grief is the meaning of a
lack of evidence about groundings of a predicate

L.
il.

iil.

iv.

Effectively means false in a classic rule system (weight is 0)

Means unknown in a probabilistic system (weight is 1 in initial

messages)

[struggled for quite a while to find a single consistent semantics,

including spending some time with what was essentially a multi-

valued logic that added an undefined value as an alternative to a

numeric value.

a. No consistent way of viewing/treating undefined seemed to
work in terms of whether it acts as an identity element during
sum and product or causes the sum or product to become
undefined.

[eventually decided to provide the ability to declare whether a

predicate is open world or closed world - also similar to Alchemy

- with the former meaning that any non-specified instance of the

predicate defaults to a weight of 1 and the latter implying a default

weight of 0.

a. So far, this has let me make progress, but I may still learn more
about this that destabilizes this solution; for example, should it
prove necessary to use the same predicate in a
condition/action and a pattern (see below).

C. Long-term memory
1. LTM consists of a set of conditionals
a. Each conditional is a list of patterns

I

il.

A pattern is a predicate, with constants or variables for the
arguments
a. E.g.: (color (id (il)) (value brown))
Each pattern corresponds to an alpha memory in a Rete network
and becomes a variable node in the graph
a. Sharing of alpha memories across conditionals becomes
important semantically when there are multiple constraints on
the corresponding pattern, such as both priors and likelihoods
1. This contrasts with the Rete model of sharing which is only
for efficiency, because messages never go backwards from
beta memories to alpha memories
2. Sharing is signified explicitly by using alpha variables to
remember and reuse patterns.

iii. Patterns are connected by analogues of beta nodes in a Rete
network; i.e., factor nodes that connect results from alpha nodes
and earlier beta nodes.

b. Ended up splitting the list of patterns into three sublists, each with
slightly different semantics

i. Conditions (generators)

a. Semantics correspond to those of a production condition
b. The alpha (variable) node is constrained by the evidence; that
is, by a match to working memory
1. The working memory node is connected to the alpha
memory through intermediate nodes that test for constants
and map variable names from those used in the working
memory to those used in the conditional (delta factors)

WM Constants Delta Alpha

re—{ el @ —®

2. Because this is simply propagation of evidence, and
evidence is immutable, at least within a settling, no
backwards messages are sent through this alpha network.

c. Because this is a condition whose value is only to be

determined by WM, propagation of

information also does not happen Alpha Beta
backwards from the subsequent Q— PO
beta nodes.

ii. Actions (absorbers)

a. Semantics correspond to those of a production action

b. The alpha node is unconstrained by the evidence - i.e,, it is not
matched to WM - but it is constrained by any information
propagated backwards from beta nodes.

c. No messages are sent from the
alpha node to the attached beta Alpha Beta
nodes since actions do not provide Q— @
information or constraint to any
other patterns.

iii. Patterns (propagators)

a. Semantics correspond to a node in a probabilistic network

b. The alpha node is constrained by WM, just as in a condition,
including not sending messages backwards from the alpha

node towards WM.
c. The alpha node is also constrained
by any other messages propagating Alpha Beta
around in the beta network, so
messages pass both ways between “_’D“

the alpha node and its associated

beta nodes.
c. The condition list comes first in the graph, followed by the pattern list,
and then the action list
i. A probability distribution is required over all of the variables
appearing in the patterns that don’t

appear in conditions. Beta Distribution
a. Distribution can be a constant ‘1’ ‘<_.|:|.‘
though.

b. Condition variables effectively
generate distinct instantiations while pattern variables
represent probabilistic attributes of these instantiations
ii. A prioris a conditional with a single pattern and a distribution
over its variables

Example: P(time(time)/time)
(conditional 'time

:patterns '((time time (value (time))))

:distribution '((0 0) (0.032058604 1) (0.08714432 2)

(0.23688282 3) (0.6439142 4)))

Each entry in this distribution represents (1) a constant function on one
variable/dimension: (2) time. So, for example, the first entry specifies that the value
is 0 at time 0, and the second that it is 0.032058604 at time 1. The function as a
whole specifies an exponential decay as time moves backward from the present.

iii. A likelihood is a conditional with multiple patterns and a
conditional probability distribution over the patterns.
a. Evidence constrains the consequents, which in turn constrain
the antecedents.

Example: P(alive(il,alive) |time(time) /time)
(conditional 'time-alive

:patterns "((time time (value (time)))

(alive (id il) (value (alive))))

tdistribution '((1] 1 false) (1 2 true) (1 3 true) (1 4 true))
Each entry in this distribution represents (1) a constant function on the two
variables over a region of the (2) time and (3) alive variables/dimensions. So, for
example, the first entry says that the probability is 1 that at time 1 alive is false.

iv. A posterior can take one of two forms:
a. A classic rule, comprising conditions and actions

Example: next(a.b) & next(b,c) --> next(a,c)
(conditional 'trans
:conditions '((next (id (a)) (value (b)))
(next (id (b)) (value (c)))
tactions "((next (id (a)) (value (c)))

)
))

Example: test-e(id,t1) & —test-n(id,t1) --> test-c(id,t1)
(conditional 'copyl
:conditions '((test-e (id (id)) (value (tl)))
(test-n - (id (id)) (value (tl))
tactions "((test-c tc (id (id)) (value (t1l)

))

))))

b. Multiple patterns with a conditional probability distribution,
just as with a likelihood, but with evidence constraining the
antecedents, which in turn constrains the consequents.

Example: P(next(a.c)|next(a.b), next(b,.c))
(conditional 'trans
:patterns '((next (id (a)) (value (b)))
(next (id (b)) (value (c)))
(next (id (a)) (value (c)))))

c. [still need to understand this better.

v. Mixtures are showing up when, for example, conditions are used
to match object identifiers but then the attributes of the objects
are determined probabilistically.

Example: state(state,id) /state-id-->, P(concept(id,concept)/id-concept)
(conditional 'concept
:conditions '((state state-id (state (state)) (id (id))))
:patterns '((concept id-concept (id (id)) (value (concept))))
tdistribution '((.25 *)))

Example: state(state,id)/state-id-->, P(weight(id,weight)|concept(id,concept) /id-
concept)
(conditional 'concept-weight
:conditions '((state state-id (state (state)) (id (id))))
:patterns '"((concept id-concept (id (id)) (value (concept)))
(weight (id (id)) (value (weight))))
:distribution '(((-2/15 0 2/75) walker (5 10))
((4/15 0 -1/75) walker (10 20))
((-2/1881 0 2/1881) table (1 20))
((5/198 0 -1/3960) table (20 100))
((-2/7301 0 2/7301) dog (1 50))
((3/149 0 -1/7450) dog (50 150))
((-2/59451 0 2/59451) human (1 150))
((16/1995 0 -1/49875) human (150 400))))
Each entry/line in this distribution represents (1) a linear function on the two
variables over a region of the (2) concept and (3) weight variables/dimensions. So,
for example, the first entry is -2/15 + 0*concept + 2 /75*weight for concept=walker
and weight in [5,10>. Multipliers/weights for symbolic dimensions are almost
always 0.

D. The key to how this provides first-order aspects of reasoning in factor graphs
is that each element in a variable’s domain can effectively become its own

Boolean random variable that can take on a weight in [0,1]. Each message
then contains information about all possible bindings, enabling match to
compute variable bindings in parallel.

1.

Thus we are looking for all possible legal bindings of the variables rather
than a single right/best answer.
a. A bitlike multi-attributes versus uni-attributes in Soar
Can view this as either a non-Bayesian use of the graph or as a second-
order (or first-order?) Bayesian approach.
a. Need to declare such variables explicitly as multiple and always use
MAX rather than SUM for them
i. Each individual element of a multiple variable can weigh up to 1
simultaneously, whereas the weights on elements of a non-
multiple variable would normally sum to 1 (if normalized).
Relates to the use of templates and plates in the graph world, but there -
as with Alchemy - they end up compiling a ground graph from the
templates/plates rather than sending around these more complex
messages.

E. There are several possibilities for implementing negated conditions.

1.
2.

Testing explicit negative information versus lack of positive information.

Testing for a 0 value for positive element versus adding negative

elements and testing for a 1 value for them.

a. Need to extend standard graph inference mechanisms to do anything
positive based on a 0 value.

Implemented explicit negations

a. Automatically generate a special Boolean attribute for objects: inwm

b. Something in WM has a value of 1 for (inwm true) and O for (inwm
false) while something that is absent has the inverse values
i. Unknown items have both set to 1 to start (open world)

c. Apositive condition tests (inwm true) while a negated condition
tests (inwm false)

F. How is working memory changed?

1.

2.

Soar productions match to WM and generate changes to WM.

a. One parallel cycle of match and firing is called an elaboration cycle.

b. An elaboration phase comprises a sequence of elaboration cycles until
quiescence; i.e., until no more productions can fire.

c. Changes to working memory may be i-supported or o-supported, with
the difference being that the former behave as in a justification-based
truth maintenance system (JTMS); that is, changes are automatically
retracted when the support for them goes away. O-supported
changes are tied to operator implementation while i-supported
changes result from elaborations (random rules not tied to operator
implementation).

In contrast, cycles in a graphical model involve sending messages, and

quiescence occurs when there are no more messages waiting to be sent.

10

a. Itis possible to conceive of this all happening within each elaboration
cycle, so that you wait for graph quiescence before modifying WM, but
then have multiple such cycles within a single elaboration phase (and
thus within a single decision).

b. Alternatively, can reconceive of the elaboration phase as comprising
the act of reaching quiescence in a graph.

i. Changes to the values in WM would only occur at a decision, and
would loosely correspond to o-supported changes to Soar’s WM.

a. Partof updating evidence prior to each new decision cycle.

ii. Within an elaboration phase, messages would chain through
variable nodes in the graph, without actually modifying WM. Such
changes would be self-revising when WM changes, and thus would
act something like i-supported changes to Soar’s WM.

a. This is implemented by sharing an
alpha node between an action in one Alpha Beta
conditional and a condition in
another (or between patterns in two
conditionals).

b. This would also be the locus of
trellises for bounded forms of
sequential (signal and theory of mind) processing during the
elaboration phase.

G. A general concern to watch out for at the pattern level is whether the
modifications of standard graph operations, such as in limiting the direction
of flow of messages in conditions and actions, maintain the semantics of the
factor graphs.

1. There is a temptation to do graph hacking to make things work

2. If the graphs can still be viewed as computing the product of subfunctions
defined by the factors, then we are still within the semantics; otherwise
we may still be doing something interesting, but it wouldn’t quite be
factor graphs.

IV. The genre level
A. Pure procedural memory - traditional productions/rules - consists of
conditionals comprising just conditions and actions

Example: next(a.b) & next(b,c) --> next(a,c)
(conditional 'trans
:conditions '((next (id (a)) (value (b)))
(next (id (b)) (value (c)))
ractions "((next (id (a)) (value (c)))

)
))

1. Itis also possible to have posteriors with probabilities, based on patterns
rather than conditions and actions, but I'm not sure how to think of these
at the moment.

11

Example: P(next(a.c)|next(a.b), next(b.c))
(conditional 'trans
:patterns '((next (id (a)) (value (b)))
(next (id (b)) (value (c)))
(next (id (a)) (value (c)))))

B. Pure declarative (semantic and episodic) memory is based on priors and
likelihoods, which themselves are based on patterns and distributions

1. Itis possible to conceive of declarative memory being situated in working
memory - if we remove the assumptions concerning its limited capacity
and temporal extent - or in long-term memory.

a. Intriguing recent work by Brown, Neath and Chater shows that it is
possible to model the traditional psychological working memory
results without a distinction between short-term and long-term
memories, and instead with a uniform approach based on a notion of
temporal discrimination of information that is analogous to spatial
and other forms of perceptual discrimination.

2. Thave done some thinking about, and experimentation with, WM versions
of declarative memory, but not with great success so far, so [will
concentrate here on LTM versions.

3. Semantic memory, of the categorization form discussed earlier, consists
merely of one conditional encoding the prior distribution over the
concept labels, plus an additional conditional for each attribute that
encodes the likelihood of the attribute.

a. The prior has a pattern for the concept label and a distribution over it.

Example: state(state,id) /state-id-->, P(concept(id,concept)/id-concept)
(conditional 'concept
:conditions '((state state-id (state (state)) (id (id))))
:patterns '((concept id-concept (id (id)) (value (concept))))
tdistribution '((.25 *)))

b. The attribute likelihoods have patterns for the concept label and the
attribute, with a conditional distribution from the concept to the
attribute.

Example: state(state,id)/state-id-->, P(weight(id,weight)|concept(id,concept) /id-

concegtl

(conditional 'concept-weight
:conditions '((state state-id (state (state)) (id (id))))
:patterns '"((concept id-concept (id (id)) (value (concept)))
(weight (id (id)) (value (weight))))

:distribution '(((-2/15 0 2/75) walker (5 10))

((4/15 0 -1/75) walker (10 20))

((-2/1881 0 2/1881) table (1 20))

((5/198 0 -1/3960) table (20 100))

((-2/7301 0 2/7301) dog (1 50))

12

((3/149 0 -1/7450) dog (50 150))
((-2/59451 0 2/59451) human (1 150))
((16/1995 0 -1/49875) human (150 400))))

c. Given evidence on some of the attributes, sum-product generates a
marginal over the concept label and predicts the other attributes by
summing over all possible concepts.

4. In Soar 9, episodic memory is encoded by storing a snapshot of working
memory once per decision into a special-purpose, long-term, episodic
memory. This memory is accessed by creating a cue in a special part of
WM, which results in retrieving the most recent best match from episodic
memory into a special region of WM.

5. Inthe current approach, episodic memory is very much like semantic
memory, except that:

a. Atime variable is used in place of the concept variable
i. The prior distribution on the time variable decays exponentially as

you move further into the past

Example: P(time(time)/time)
(conditional 'time
:patterns "((time time (value (time))))
:distribution '((0 0) (0.032058604 1) (0.08714432 2)
(0.23688282 3) (0.6439142 4)))

b. The attribute likelihoods contain instance rather than aggregate
information.

Example: P(alive(il,alive) [time(time) /time)
(conditional 'time-alive
:patterns "((time time (value (time)))
(alive (id il) (value (alive))))
tdistribution '((1 1 false) (1 2 true) (1 3 true) (1 4 true))

c. You maximize rather than sum so that you retrieve information from
the best matching episode rather than aggregating retrieval across all
episodes.

i. There is some additional trickiness to extracting the elements with
the maximal values that is only partially implemented.

6. Other than the presence of the temporal variable - which will require
some amount of architectural support - and its use in place of the concept
variable, the key difference between semantic and declarative memory is
the used of MAX rather than SUM.

a. This could explain why they must be separate modules in some sense
even though almost everything about their implementation is
identical.

13

b. Also implies that while it may be possible to retrieve attributes of
multiple objects in parallel from declarative memory, can retrieve
only one episode from episodic memory during any one settling?

i. Because of the difference between computing all marginals and a
single best answer.

7. One interesting thing that turned up while thinking about a WM
implementation of semantic memory is that the difference between
analogical and inductive transfer could fundamentally come down to
whether you use MAX (to get the single best instance) or SUM (to get the
generalizations across all instances).

a. Shifting this concept to an LTM version of semantic memory, leads to
an implemention as a set of instances encoded a la episodic memory,
but with long-term object symbols rather than time in the condition,
and the concept just one additional attribute

Example: P(object(object) /object)

(conditional 'object
:patterns '((object object (value (object))))
tdistribution '((.125 *)))

Example: P(mobile(il,mobile)|object(object) /object)
(conditional 'object-mobile
:patterns ‘((object object (value (object)))
(mobile (id il) (value (mobile))))
tdistribution
"((1 ol true) (1 o2 true) (1l o3 true) (1 o4 true)
(1 o5 true) (1 o6 false) (1 o7 true) (1 o8 true)))

b. Does appear to yield a memory which either returns best matched
object(s) given evidence or probabilistic marginals for other attribute
values

V. Peeking beyond the elaboration phase
A. Decision making
1. Have started to look at operator choice as the weighted selection of an id
for the operator attribute of the state
a. Preferences are implemented by manipulating the differential weights
b. A few tricky issues remain to be addressed, such as:
i. The creation of unique ids for dynamically generated operators
ii. Multiple incompatible uses of a single alpha memory with
differential variable (or constant?) bindings (also for better
preferences)
c. Impasses must arise from some form of inability to make such a
decision.
2. Or do we need to think in terms of multiple multivariate functions, each
represented separately via graphs, or in some intermingled fashion?

14

a. Elaboration is a function of state and represents joint distribution
over it

b. Utility is a separate function of the state and goal

c. Actions are functions of operator plus prior and successor states

d. Preferences are functions of state, operators and goal

B. Problem solving

1.

2.

Limited forms of search could occur within the elaboration phase (K-

Search) via chaining in the graph.

a. Limited in one sense, but expanded to handle trellises, etc.

More traditional search (PS-Search) must occur across multiple

elaboration phases (and accompanying decisions).

a. One way to think about such search is by defining a multivariate
function for the whole problem to be solved (achieving a goal or
maximizing a numeric function).

i. One model for (at least part) of this might then be the solution

approach of conditioning in graphical models, where variables are

heuristically set to concrete values in order to reduce the
complexity of solving the graph, with an explicit combinatoric
search then being required over the possible combinations of
variable values thus set.

C. Learning
1. Need to look for as general a set of mechanisms as possible for acquiring

conditionals of the appropriate forms from the knowledge that is
available for learning.

a. Atleast covering chunking and reinforcement learning for procedural

knowledge plus acquisition of semantic and episodic knowledge.
An alternative perspective is that need to learn each of the four(?)

multivariate functions that may be needed as part of the decision cycle

Elaboration learned from experience with evidence
Utility learned from experience with reinforcers
Actions learned from experience in performing them
Preferences learned from experience with the action and utility
functions
A third possible perspective is that there are two general forms of
learning possible and required
a. Learning from snapshots to acquire data and regularities

i. Would handle declarative and episodic learning
b. Learning from traces/dependencies to (better) predict future
i. Chunking records what is currently predicted

e o

ii. RL (and things like backprop) alters weights so as to better predict

c. Isthere arelationship between episodic memory and traces?

i. Traces normally assume a causal/dependency structure which is

not mandatory in episodic memories

15

