A Graphical Memory Architecture

Paul Rosenbloom
University of Southern California

5/20/2010
Memory Architecture

- **Nature of memories used within decision cycle**
- **Short-term/working and long-term memories**
 - Soar 1-8: working memory + production memory
 - ACT-R: buffers + production memory, semantic memory
 - Soar 9: working memory, ST visual imagery + production memory, semantic memory, episodic memory, LT visual memory
- **Focus here is on representation and access**
 - Haven’t yet got to learning
Goals

- Broadly functional memory architecture
 - Both procedural and declarative knowledge
 - *Hybrid*: Continuous/signal + discrete/symbolic
 - *Mixed*: Probabilistic/uncertain + discrete/symbolic

- Uniform implementation

- Provide core for development of full hybrid mixed architecture
 - Melding scope with simplicity and elegance
Approach

- **Base roughly on Soar 9 and ACT-R**
 - Working memory
 - Procedural LT Memory
 - Productions
 - Declarative LT Memory
 - Semantic: Predict unspecified attributes of objects based on specified ones (cues)
 - Episodic: Retrieve best episode based on recency and match to cues
 - Eventually imagery as well, but not yet

- **Implement via graphical models**
 - Layered approach: *graph* and *memory* layers
Graph Layer: Factor Graphs w/ Summary Product

- **Factor graphs are undirected bipartite graphs**
 - Decompose functions: e.g., \(f(u,w,x,y,z) = f_1(u,w,x)f_2(x,y,z)f_3(z) \)
 - Map to variable & factor nodes (with functions in factor nodes)

- **Summary product algorithm does message passing**
 - Compute values of variables (marginals) by sum-product
 - Compute best overall (max. a posteriori) by max-product

Complete reimplementation from last year with improved functionality, generality, efficiency
Generalized Function/Message Representation

- **N dimensional continuous functions**
 - Approximated as piecewise linear functions over rectilinear regions

- **Span (continuous) signals, (continuous and discrete) probability distributions, symbols**
 - *Discretize domain* for discrete distributions & symbolic
 - \([0,1>, [1,2>, [2,3>, ...

 - *Booleanize range* (and add symbol table) for symbolic
 - E.g., \([0,1]=1 \rightarrow \text{RED true}; [1,2]=0 \rightarrow \text{GREEN false}

| \(y|x \) | [0,10> | [10,25> | [25,50> |
|--------|--------|--------|--------|
| [0,5> | 0 | .2y | 0 |
| [5,15> | .5x | 1 | .1+.2x+.4y |
Memory Layer: Distinguish WM and LTM

- **Representation is predicate based**
 - E.g., `Object(s,O1), Concept(O1,c)`
 - Arguments may be constants, or variables (in LTM)

- **Long-term memories compile into graphs**
 - LTM is composed of *conditionals* (generalized rules)
 - Each conditional is a set of predicate patterns and a function

- **WM compiles into functions in peripheral factor nodes**
 - It is just an N dimensional continuous function where normal symbolic wmes correspond to unit regions with Boolean values

- **Elaboration phase is one settling of graph**
Conditionals

- **Patterns can be conditions, actions or conducts**
 - Conditions and actions embody normal rule semantics
 - Conditions: Messages flow from WM
 - Actions: Messages flow towards WM
 - Conducts embody (bidirectional) constraint/probability semantics
 - Messages flow in both directions: local match + global influence
 - Encoded as (generalized) linear *alpha networks*

- **Pattern networks joined via bidirectional *beta network***

- **Functions are defined over conduct variables**
Additional Details

- **Link directionality** is set independently for each link
 - Determines which messages are sent
- **Whether to use** *sum* or *max* is specified on an individual variable/node basis
 - Overall algorithm thus mixes sum-product and max-product
- **Variables can be specified as** *unique* or *multiple*
 - Unique variables sum to 1 and use *sum* for marginals: [.1 .5 .4]
 - Multiple variables can have any or all elements valued at 1 and use *max* for marginals: [1 1 0 0 1]
- **Predicates can be declared as** *open world* or *closed world* with respect to matching WM
- **Pattern variables** cause sharing of graph structure
 - May be within a single conditional or across multiple conditionals
Memories

Production Memory

- Just conditions and actions
 - Although may also have a function
- CWA and multiple variables

CONDITIONAL Transitive
Condition: Next(a, b)
Next(b, c)
Action: Next(a, c)

Semantic Memory

- Just conducts (in pure form)
- OWA and unique variables
- Naïve Bayes (prior on concept + conditionals on attributes)

CONDITIONAL ConceptWeight
Condition: Concept(O1, c)[α1]
Weight(O1, w)

CONDITIONAL ConceptPrior
Condition: Object(s, O1)
Condition: Concept(O1, c)[α1]

<table>
<thead>
<tr>
<th>w/c</th>
<th>Walker</th>
<th>Table</th>
<th>Dog</th>
<th>Human</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1,10]</td>
<td>.01w</td>
<td>.001w</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[10,20]</td>
<td>.2-.01w</td>
<td>“</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[20,50]</td>
<td>0</td>
<td>.025-.00025w</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[50,100]</td>
<td>“</td>
<td>“</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Memories (cont.)

Episodic Memory
- Just conducts (in pure form)
- OWA and unique variables
- Exponential prior on time + conditionals on episode attributes

Constraint Memory
- Just conducts (in pure form)
- OWA and multiple variables

Conditional TimeConcept
Condact: Time(t)[α3]
Concept(O1,c)

<table>
<thead>
<tr>
<th>c\c2</th>
<th>Red</th>
<th>Blue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Blue</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

CONDITIONAL TwoColorConstraint12
Condact: Color(R1,c1)[α7]
Color(R2,c2)[α8]

CONDITIONAL TimePrior
Condact: Time(t)[α3]

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>.032</td>
<td>.087</td>
<td>.237</td>
<td>.644</td>
</tr>
</tbody>
</table>
Key Similarities and Differences

Similarities

- All based on WM and LTM
- All LTM based on conditionals
- All conditionals map to graph
- Processing by summary product

Differences

- Procedural vs. declarative
 - Conditions/actions vs. conducts
 - Directionality of message flow
 - Closed vs. open world
 - Multiple vs. unique variables
- Semantic vs. episodic
 - Marginal/sum vs. MAP/max
 - Condition on concept vs. time
 - General probs. vs. instances

Is analogy vs. generalization driven by max vs. sum over instance-based memory?

Constraints are actually hybrid: conducts, OWA, multiple

Other variations and hybrids are also possible
Summary

Gold

- Uniform implementation of four distinct LTMs
- Reveals subtle underlying differences among the LTMs
- An important step towards a full hybrid mixed architecture
 - Working on decisions
 - Then subgoaling & learning
 - Proposal on imagery
 - Leverage continuous functions at core and known facility of graphical models for perception

Coal

- Subtle incompatibilities imply less uniformity in details
 - They have also proven quite difficult to resolve cleanly
- Progress can be slow & difficult
 - With occasional bursts of insight
- Not full memory implementations
 - And no learning
- Still far from full architecture
 - And from showing that there is a significant functional gain from this approach