Graphical Models for Cognitive Architecture

Resolving the Diversity Dilemma

Paul S. Rosenbloom
Department of Computer Science & Institute for Creative Technologies
University of Southern California
June 26, 2009
The Diversity Dilemma

- Should an architecture’s mechanisms be uniform or diverse?
 - *Uniformity*: Minimal mechanisms combining in general ways
 - Appeals to simplicity and elegance
 - The “physicist’s approach”
 - *The Challenge*: Achieving full range of required functionality/coverage
 - *Diversity*: Large variety of specialized mechanisms
 - Appeals to functionality and optimization
 - The “biologist’s approach”
 - The Challenge: Achieving integrability, extensibility and maintainability

- Want best of both worlds, but a choice seems inevitable
 - Functionality tends to win, leading to the predominance of diversity
 - But is there another way out?
Example: Soar

- Through version 8 was a uniform architecture
- Version 9 has become highly diverse
Proposal for Resolving the Dilemma

- Dig beneath architecture for uniformity at implementation level that supports diversity/functionality in architecture (and above)
 - Implementation level is normally just Lisp, C, Java, etc.
 - Impacts efficiency and robustness but usually not part of theory unless based on neural networks
- Base implementation level on graphical models for a uniform approach to symbol, probability and signal processing
 - Related to neural networks but broader
- Reconceive architectures via new implementation level
 - Reimplement, enhance and hybridize existing architectures
 - Develop new architectures
 - Improve elegance, functionality, extensibility, integrability and maintainability
Graphical Models

- Efficient computation with multivariate functions
 - By decomposition over partial independencies
 - For constraints, probabilities, speech, etc.

- Come in a variety of related flavors
 - **Bayesian networks**: Directed, variable nodes
 - E.g., \(p(u,w,x,y,z) = p(u)p(w)p(x|u,w)p(y|x)p(z|x) \)
 - **Markov networks**: Undirected, variable nodes & clique potentials
 - Basis for Markov logic and Alchemy
 - **Factor graphs**: Undirected, variable & factor nodes
 - E.g., \(f(u,w,x,y,z) = f_1(u,w,x)f_2(x,y,z)f_3(z) \)

- Compute marginals via variants of
 - Sum-product (message passing)
 - Monte Carlo (sampling)
Potential for the Implementation Level

- State-of-the-art algorithms for symbol, probability and signal processing all derivable from the sum-product algorithm
 - Belief propagation in Bayesian networks
 - Forward-backward in hidden Markov models
 - Kalman filters, Viterbi algorithm, FFT, turbo decoding
 - Arc-consistency in constraint diagrams

- Potential to go beyond existing architectures to yield an effective and uniform basis for:
 - Fusing symbolic and probabilistic reasoning (mixed)
 - Unifying cognition with perception and motor control (hybrid)
 - Bridging from symbolic to neural processing

- Raises hope of a uniform implementation level that integrates broad functionality at the architecture level
Scope of Sum-Product Algorithm

<table>
<thead>
<tr>
<th>Message/Variable Domain</th>
<th>Discrete</th>
<th>Continuous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boolean</td>
<td>Symbols</td>
<td>Signal & Probability (Density)</td>
</tr>
<tr>
<td>Numeric</td>
<td>Probability (Distribution)</td>
<td></td>
</tr>
</tbody>
</table>

- **Mixed** models combine Boolean and numeric ranges
- **Hybrid** models combine discrete and continuous domains
- **Hybrid mixed** models combine all possibilities
- **Dynamic hybrid mixed** models add a temporal dimension
Research Strategy

- **Goals**
 - Evaluate extent to which graphical models can provide a uniform implementation layer for existing architectures
 - Develop novel, more functional architectures
 - Enhancing and/or hybridizing existing architectures
 - Starting from scratch leveraging strengths of graphical models

- **Initial approach**
 - Reimplement and enhance the Soar architecture
 - One of the longest standing and most broadly applied architectures
 - Exists in both uniform (Soar ≤8) and diverse (Soar 9) forms
 - Start from the bottom up, implementing uniform version while looking for opportunities to more uniformly incorporate Soar 9’s diversity plus critical capabilities beyond all versions of Soar
Progress to Date

- *Elaboration cycle* implementation via factor graphs
 - *Production match*
 - Production firing
- *Decision cycle* implementation via Alchemy (Markov logic)
 - *Elaboration phase*
 - Decision procedure
- With both also went beyond existing capability
 - *Lower complexity bound* for production match
 - Most recently, also began extension of WM beyond symbols
 - *Mixed* elaboration phase with simple *semantic memory* and *trellises*
- Still preliminary, partial implementations
 - Sufficient to demonstrate initial feasibility
 - Insufficient for full evaluation of impact on uniformity and functionality
Simple Mapping of Production Match onto Factor Graphs

P1: Inherit Color
 C1: (\langle v0 \rangle \ ^\text{type} \ <v1>)
 C2: (\langle v1 \rangle \ ^\text{color} \ <v2>)
 \rightarrow
 A1: (\langle v0 \rangle \ ^\text{color} \ <v2>)

Model as a Boolean function:
\[P_1(v_0,v_1,v_2) = C_1(v_0,v_1)C_2(v_1,v_2)A_1(v_0,v_2) \]

WM is 3D Boolean array \((\text{obj} \times \text{att} \times \text{val})\)
 1 when triple in WM
 0 otherwise

Messages are Boolean vectors
 1 when variable value possible
 0 when variable value ruled out

WM is embedded in factors
Confuses binding combinations
Constant tests hidden in factors
May not check if rule completely matches
Factor Graph Results

- Four issues have been resolved, yielding a new match algorithm
 - Tracks variable binding combinations only as needed
 - Complexity bound is exponential in *treewidth* rather than conditions
 - Avoids some duplicate instantiations on a cycle
 - Combines discrimination (α) and join (β) activities in uniform graph

- Solutions to binding confusion and rule matching increase number of rule variables processed at variable nodes
 - Yields exponential growth in message size and processing cost
 - Need to leverage tendency towards uniform values in WM and messages to reduce space and time costs
 - WM is nearly all 0 while messages are nearly all 1 or 0
Hierarchical Memories and Messages

- N dimensional variant of *quad/octrees* (*exptrees*)
 - If entire space has one value, assign it to region
 - Otherwise, partition space into \(2^N\) regions at next level, and recur

- WM & messages are *piecewise constant* functions

- Recently extended to *piecewise linear* functions
 - E.g., in 3D: \(f(<x,y,z>, r) = A_r + B_{r,1}x + B_{r,2}y + B_{r,3}z\)
 - Natural compact representation for probabilities, signals, images, etc.
 - Also handles symbols by setting the Bs to 0
 - *Implemented mem. but not yet all of sum-product*
 - *Product implemented with reapproximation*

- Could also consider more adaptive partitioning that clusters/reorders symbolic data points into regions based on patterns in the data

Support a spatial reasoning with time dimension?
Example Match Times

P1: Inherit Color
C1: (\textless v0 \textgreater ^type \textless v1 \textgreater)
C2: (\textless v1 \textgreater ^color \textless v2 \textgreater)
-->
A1: (\textless v0 \textgreater ^color \textless v2 \textgreater)

With solutions to all four problems, rule graph comprises 8 factor nodes and 8 variable nodes.

WM is 16^3 in size, with 4 wmes

<table>
<thead>
<tr>
<th>Arrays</th>
<th>Sum of Products</th>
<th>Redistribute P over S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exceeded heap space</td>
<td>1.7 sec.</td>
<td>~7</td>
</tr>
<tr>
<td>Hierarchies</td>
<td>132 sec.</td>
<td>.25 sec.</td>
</tr>
</tbody>
</table>

Unoptimized Lisp

~500
Implementing Soar’s Elaboration Phase via Alchemy (Markov logic)

- **Markov logic = First order logic + Markov networks**
 - Compiles weighted FOL into a ground Markov logic network
 - Node for each ground predicate
 - Weight for each ground clause (clique potentials)
 - Along with links among all nodes in ground clause

- **Goals for implementation**
 - Explore a *mixed* elaboration phase (rules & probabilities)
 - Explore semantic (fact) memory and *trellises*
 - Enable bidirectional message flow across rules
 - Normal elaboration cycle only propagates information forward
 - But need bidirectional settling for correct probabilities and trellises

Analogue to compilation of RL rules?
Encoding

- Convert productions into logical implications
- Define types for objects and values of triples
 - colors={Red, Blue, Green} and objects = {A, B, C, D, E, F}
- Define predicates for attributes
 - Color(objects, colors) and Type(objects, objects)
- Specify implications/clauses for rules
 - (Type(v0, v1) ^ Color(v1, v2)) => Color(v0, v2).
- Add weights to clauses as appropriate
- Initialize evidence (db file) with WM
 - Color(C, Red), Color(D, Blue), Type(A, C), Type(B, D)
- Semantic memory: weighted ground predicates: 10 Color(F, Green)
- Trellis: define via a pair of implications (accept & reject prefs.)
 - Size(step, size) => Size(step+1, size*2).
 - (Size(step, size1) ^ size1!=size2) => !Size(step, size2).
Alchemy Results

- Mapping basically works (modulo trellis strangeness)
 - Mixed representation with simple semantic memory and trellises
- Match occurs via graph compilation not message propagation
 - As Alchemy compiles first-order clauses to ground network
 - All symbolic reasoning in compilation and probabilistic in propagation?
 - Falls short of uniform processing in the graph itself
- Implies a three phase decision cycle
 1. Compile/match to generate a ground/instantiated network
 2. Perform probabilistic inference in the ground network
 3. Decide
- Exptrees yield variants of Alchemy’s laziness and lifting
 - Deal with default values and groups of elements processed in same way
Locality Implications

- Alchemy, and systems like it, get stuck in local minima
 - Generally considered a problem, but is it really?
- If Alchemy maps onto Soar’s decision cycle then it only needs to perform K-Search
 - Conceptualize K-Search functionally as yielding local minima?
 - If so, then finding global minima, in general, requires PS-Search
- Implication would be that Alchemy should just yield local minima, but it also needs PS-Search on top of it
 - The same might then be said for all one-level, logical and/or probabilistic inference systems
Locality Implications (cont.)

- Taking this a step further, we can hypothesize functionally that:
 - Elaboration Cycle (10 ms): Local propagation of information
 - Decision Cycle (100 ms): Global propagation but only local minima
 - Problem Space Search (≥ 1 sec): Global minima (via sequence of local minima)

- But this implies that the elaboration cycle can’t do global propagation of information
 - Explicit global: Creating unique identifiers
 - Implicit global: Non-monotonic (negated conditions, operator applications)
 - Accessing all of working memory?

- Could Soar function if global propagation were limited to the decision cycle?
 - I may need to answer this for a graphical implementation of Soar
New approach to cognitive architecture
- Via a uniform graphical implementation level
 - Uncertain symbolic processing
 - Signal processing in inner loop
 - Potential bridge to neural
- May resolve diversity dilemma
 - Improving elegance, scope, integrability and maintainability
- Early results on elaboration cycle/phase are encouraging
 - New match algorithm with improved complexity bound
 - Mixed elaboration phase with semantic memory and trellises

Far from complete architecture
- Combine two experiments
- Add decisions, impasses, chunking
- Incorporate Soar 9 extensions
- Locality may be Achilles heel
 - Or mapping from mechanism to implementation may be so complex as to lose benefits of uniformity in implementation
- May be too slow for actual use
- A common implementation level need not guarantee clean integrability
- Need to show not just more elegance, but increased utility