Towards a New Cognitive Hourglass
Resolving the Diversity Dilemma in Cognitive Architecture via a Uniform Implementation Level Based on Graphical Models

Paul S. Rosenbloom
Department of Computer Science & Institute for Creative Technologies
University of Southern California
August 12, 2009
Planned Near-Term CAWG Topics

- Review vision, background and published work
 - 1-2 sessions, as needed to get through material at understandable pace
- A Bayesian framework for the elaboration phase
 - Mixing symbolic and probabilistic processing
 - Integrating procedural, semantic and episodic knowledge
- Status update on implementing Bayesian framework
- Function/memory/message representation
 - Integrating symbolic, integral, and continuous data
 - Yielding closed, efficient computation
Cognitive Architecture

- Hypothesis about fixed structure underlying cognition
 - Defines core memories, reasoning processes, learning mechanisms, external interfaces, etc.
- Yields intelligent behavior when combined with knowledge in memories
 - Including more advanced reasoning, learning, etc.
- May model human cognition, strive for human-like intelligence, or be purely artificial
Example: Soar (3-8)

- Symbolic working memory
- Long-term memory of rules
- Decide what to do based on preferences retrieved into working memory
- Reflect when can’t decide
- Learn results of reflection
- Interact with world
In the large, cognitive architecture is a theory about one or more systems levels in an intelligent being.

- Usually part of Cognitive Band

At each level, a combination of structures and processes implements basic elements at the next higher level.

(Newell, 1990)
Hierarchical View of Soar (3-8)

<table>
<thead>
<tr>
<th>Scale</th>
<th>Functionality</th>
<th>Mechanism</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 sec</td>
<td>Reflective</td>
<td>Problem Space Search</td>
<td>Impasse/Subgoal if can’t Decide</td>
</tr>
<tr>
<td>100 ms</td>
<td>Deliberative</td>
<td>Decision Cycle</td>
<td>Preference-based Decisions upon Quiescence</td>
</tr>
<tr>
<td>10 ms</td>
<td>Reactive</td>
<td>Elaboration Cycle</td>
<td>Parallel Rule Match & Firing</td>
</tr>
</tbody>
</table>

Learning by Chunking
Architecture/Level Girth

- An architecture/level’s *girth* is its range of structures & processes
 - Uniformity versus diversity
- Uniformity: Minimal mechanisms combining in general ways
 - Appeals to simplicity and elegance
 - The “physicist’s approach”
 - Challenge: Achieving full range of required functionality/coverage
- Diversity: Large variety of specialized mechanisms
 - Appeals to functionality and optimization
 - The “biologist’s approach”
 - Challenge: Achieving integrability, extensibility and maintainability
- Across a hierarchy, level girth may stay comparable or vary
 - Physicists and biologists likely assume uniform
 - Network researchers assume hourglass
The Internet hourglass

Applications

Web FTP Mail News Video Audio ping napster

Transport protocols

TCP SCTP UDP ICMP

IP

Link technologies

Ethernet 802.11 Power lines ATM Optical Satellite Bluetooth

From Hari Balakrishnan
What About Cognition?

- Top (applications) is clearly diverse
 - Key part of what architectures try to explain

- Bottom is likely diverse as well
 - Physicalism: Grounded in diversity of biology
 - Strong AI: Also groundable in other technologies

- Is the waist **uniform** or **diverse**?
 - Hourglass or rectangle
 - Traditionally question about the architecture
Examples

- Soar (3-8) is a traditional uniform architecture
- ACT-R is a traditional diverse architecture
Examples

- Soar is a traditional uniform architecture
- ACT-R is a traditional diverse architecture
- Recently Soar 9 has become highly diverse
Towards Reconciling Uniformity and Diversity

- Accept diversity at the architectural level
- Move search for uniformity down to implementation level
 - Biological Band in humans
 - Locus of neural modeling
 - Computational Band in AI
 - Normally just Lisp, C, Java, etc.
 - Impacts efficiency and robustness but usually not part of theory
- Base on graphical models
 - Uniform approach to symbol, probability & signal processing
 - Related to neural networks but broader

(Newell, 1990)
Graphical Models

- Efficient computation with multivariate functions: \(f(u,w,x,y,z) \)
 - By decomposition over partial independencies among arguments
 - For constraints, probabilities, speech, etc.

- Come in a variety of related flavors
 - **Bayesian networks**: Directed, variable nodes
 - E.g., \(p(u,w,x,y,z) = p(u)p(w)p(x|u,w)p(y|x)p(z|x) \)
 - **Markov networks**: Und., variable nodes & clique potentials
 - Basis for *Markov logic* and *Alchemy*
 - **Factor graphs**: Und., variable & factor nodes
 - E.g., \(f(u,w,x,y,z) = f_1(u,w,x)f_2(x,y,z)f_3(z) \)

- Compute marginals via variants of
 - Sum-product (message passing)
 - Monte Carlo (sampling)
State-of-the-art algorithms for symbol, probability and signal processing all derivable from the sum-product algorithm
 - Belief propagation in Bayesian networks
 - Forward-backward in hidden Markov models
 - Kalman filters, Viterbi algorithm, FFT, turbo decoding
 - Arc-consistency in constraint diagrams

Potential to go beyond existing architectures to yield an effective and uniform basis for:
 - Fusing symbolic and probabilistic reasoning (mixed)
 - Unifying cognition with perception and motor control (hybrid)
 - Bridging from symbolic to neural processing

Raises hope of a uniform implementation level that integrates broad functionality at the architecture level
Factor Graphs

• Decompose functions into product of nearly independent factors (or local functions)
 – E.g., $f(u,w,x,y,z) = f_1(u,w,x)f_2(x,y,z)f_3(z)$

• Draw as bipartite graph
 – Nodes for factors and variables
 – Links between factors and their variables
Bayesian Network (BN) Example

• Probabilistic reasoning involves computations of various quantities from *joint probability distributions* over random variables

 – E.g., compute the *marginal probability* \(p(u) \) from the joint probability distribution \(p(u, w, x, y, z) \) by summing out/over all of the other variables

 • \(p(u) = \sum_{w, x, y, z} p(u, w, x, y, z) \)

 – Key for tractability is to do so without having to explicitly examine every combination of values of all of the other variables.
BN Example (cont.)

- A Bayesian network represents a joint probability distribution as the product of the conditional probabilities of each random variable
 - E.g.,
 \[p(u,w,x,y,z) = p(u)p(w)p(x|u,w)p(y|x)p(z|x) \]
- Each conditional probability only involves a subset of the total set of variables (its parents)
 - Each variable is conditionally independent of all of the other variables, given its parents
 - i.e., once you know the values of the parent variables, the probability of a value of the variable can be determined independently of the values of all of the other variables
- Can radically reduce scope of combinatorics
Example BN and Factor Graph

\[p(u, w, x, y, z) = p(u)p(w)p(x|u, w)p(y|x)p(z|x) \]
Inference in Factor Graphs

- Reasoning occurs via message passing/propagation
 - From variable nodes to factor nodes
 - From factor nodes to variable nodes

- Each message from one node to a second node conveys some kind of information about the binding of a variable based on the information the first node has received from all of its neighbors other than the second node
 - Warning: A variable must take on a specific value
 - Simple setting of variable values
 - Belief: Weights/probabilities/potentials on domain of variable
 - This is the standard used in sum-product algorithm and Bayes nets
 - Survey: Likelihood of warning being required on domain elements
 - More effective than belief propagation
 - *Typical algorithms use only one of these uniformly*
Factor Graph Sum-Product Algorithm

- Computes *marginals* (or MAP/MPE)

\[f(x) = \Sigma_{u,w,y,z} f(u,w,x,y,z) = \Sigma_{u,w,y,z} f_1(u,w,x)f_2(x,y,z)f_3(z) = \Sigma_{u,w} f_1(u,w,x) \Sigma_z f_3(z) \Sigma_y f_2(x,y,z) \]

- Message passing about possible values of variables
 - Variable node combines messages from factors to which it is connected (except target factor)
 - Point-wise *product* of values for elements of variable’s domain
 - Factor node combines information from all variables to which it is connected (except target variable) plus its own function
 - Does a point-wise *product* as well
 - Also marginalizes out variables not part of target variable node (*sum*)

![Diagram of factor graph with nodes and connections](image)
Properties of Sum-Product

- Applicable to any pair of ops defining a *commutative semi-ring*
 - Both ops are associative, commutative and have identity elements
 - The distributive law is defined: \(a(b+c) = ab + ac \)
 - *E.g., +/*, max/*, OR/AND*

- Behaves differently as function of structure of graph
 - Reduces to evaluation of expression trees for *tree-structured graphs* where only care about root
 - Guaranteed to produce correct answer for *polytrees*
 - At most one undirected path between any two vertices
 - For graphs with loops, works well iteratively in many cases, but not guaranteed to produce correct answer
 - May need to add a termination criterion as well

- Tied to statistical mechanics, leading to extensions
 - Minimizes the Bethe free energy
Scope of Sum-Product Algorithm

- Mixed models combine Boolean and numeric ranges
- Hybrid models combine discrete and continuous domains
- Hybrid mixed models combine all possibilities
- Dynamic hybrid mixed models add a temporal dimension
Research Strategy

Goals

- Evaluate extent to which graphical models can provide a uniform implementation layer for existing architectures
- Develop novel, more functional architectures
 - Enhancing and/or hybridizing existing architectures
 - Starting from scratch leveraging strengths of graphical models
 - Improving elegance, functionality, extensibility, integrability and maintainability

Initial approach

- Reimplement and enhance the Soar architecture
 - One of the longest standing and most broadly applied architectures
 - Exists in both uniform (Soar ≤8) and diverse (Soar 9) forms
- Start from the bottom up, implementing uniform version while looking for opportunities to more uniformly incorporate Soar 9’s diversity plus critical capabilities beyond all versions of Soar
Published Progress to Date

- *Elaboration cycle* implementation via factor graphs
 - *Production match* and firing
- *Decision cycle* implementation via Alchemy (Markov logic)
 - *Elaboration phase* and decision procedure
- With both also went beyond existing capability
 - *Lower complexity bound* for production match
 - *Mixed* elaboration phase with simple *semantic memory* and *trellises*
- Still preliminary, partial implementations
 - Sufficient to demonstrate initial feasibility
 - Insufficient for full evaluation of uniformity and functionality
Simple Mapping of Production Match onto Factor Graphs

P_1: Inherit Color

C_1: $\langle v_0 \rangle ^{\text{type}} \langle v_1 \rangle$

C_2: $\langle v_1 \rangle ^{\text{color}} \langle v_2 \rangle$

A_1: $\langle v_0 \rangle ^{\text{color}} \langle v_2 \rangle$

Model as a Boolean function:

$P_1(v_0, v_1, v_2) = C_1(v_0, v_1)C_2(v_1, v_2)A_1(v_0, v_2)$

WM is 3D Boolean array $(\text{obj} \times \text{att} \times \text{val})$

- 1 when triple in WM
- 0 otherwise

Messages are Boolean vectors

- 1 when variable value possible
- 0 when variable value ruled out

Constant tests hidden in factors

WM is embedded in factors

Confuses binding combinations

May not check if rule completely matches
Move Constant Tests into FG

P1: Inherit Color
 C1: (<v0> ^type <v1>)
 C2: (<v1> ^color <v2>)
 -->
 A1: (<v0> ^color <v2>)

\[
P_1(v_0, v_1, v_2, v_3, v_4, v_5) = C_1(v_0, v_1, v_3)C_2(v_1, v_2, v_4)A_1(v_0, v_2, v_5)
\]

Type(v_3) Color(v_4) Color(v_5)
Bring WM into Factor Graph

P1: Inherit Color
 C1: (<v0> ^type <v1>)
 C2: (<v1> ^color <v2>)
 =>
 A1: (<v0> ^color <v2>)

\[P_1(wm,v_0,v_1,v_2) = E(wm)C_1(v_0,v_1,wm)C_2(v_1,v_2,wm)A_1(v_0,v_2,wm) \]
P2: Binding Confusion

C1: (<v0> ^type <v1>)

-->

A1: (<v0> ^type2 <v1>)

\[P_2(v_0, v_1) = C_1(v_0, v_1) A_1(v_0, v_1) \]

WM:

W1: (A ^type B)
W2: (C ^type D)

Match yields:
\[v_0 = \{ A, C \} \]
\[v_1 = \{ B, D \} \]

Action yields:
\[(A ^type2 B) \]
\[(A ^type2 D) \]
\[(C ^type2 B) \]
\[(C ^type2 D) \]

Called *instantiationless match* in earlier work
Binding Confusion Trace

P2: Binding Confusion
 C1: (v0 ^type v1)
 -->
 A1: (v0 ^type2 v1)

WM:
 W1: (A ^type B)
 W2: (C ^type D)
 [Really 6^3 Boolean array]

Left-to-Right Message

Right-to-Left Message
Binding Confusion Trace

P2: Binding Confusion
C1: (<v0> ^type <v1>)
 -->
A1: (<v0> ^type2 <v1>)

WM:
W1: (A ^type B)
W2: (C ^type D)
[Really 6^3 Boolean array]

Left-to-Right Message
Right-to-Left Message
Binding Confusion Trace

P2: Binding Confusion

C1: (<v0> ^type <v1>)

-->

A1: (<v0> ^type2 <v1>)

WM:

W1: (A ^type B)
W2: (C ^type D)

[Really 6^3 Boolean array]

Left-to-Right Message Right-to-Left Message

Total of 22 Messages in Actual Implementation
Some Possible Solutions

- Alter processing to yield full $f(v_1, v_2, \ldots)$
 - Extract instantiations after generate independent binding sets
 - Alter factor graph to directly generate instantiations (à la Rete)
- Redefine what production match is to achieve
 - Define match to generate what factor graph yields: $f_1(v_1), f_2(v_2), \ldots$
 - Write rules so that this altered semantics is sufficient
 - Variation: Divide action weight among ambiguous wmes in WM
 - E.g., each new wme set to .25 rather than 1
 - Leverages potential mixed representation to handle ambiguity
 - Variation: Compute enough of full function for correct action bindings
 - Eliminate confusion by tracking variable combinations as needed
 - Related to variable stretching and junction trees
 - Eliminate redundant instantiations that have same action variable bindings and different condition variable bindings
Tracking Variable Combinations

P1: Inherit Color

C1: (<v0> ^type <v1>)

C2: (<v1> ^color <v2>)

-->

A1: (<v0> ^color <v2>)

\[P_1(v_0,v_1,v_2) = C_1(v_0,v_1)C_2(v_1,v_2)A_1(v_0,v_2) \]
Tracking Variable Combinations

\[P_1(v_0, v_1, v_2) = C_1(v_0, v_1)C_2(v_1, v_2)A_1(v_0, v_2) \]

- Order factor nodes
- Add intervening variable nodes
- Compute where each rule variable is first and last used
Tracking Variable Combinations

\[P((v_0, v_1), (v_0, v_2)) = C_1(v_0, v_1)C_2(v_1, v_2)A_1(v_0, v_2) \]

Order factor nodes
Add intervening variable nodes
Compute where each rule variable is \textit{first} and \textit{last} used

\[P((v_0, v_1), (v_0, v_2)) = C_1(v_{01})C_2(v_{01}, v_{02})A_1(v_{02}) \]

\textit{Stretch} rule variables over all nodes between first and last usage
Complexity bounded by max rule variables at a node (\textit{treewidth})

\[\checkmark \text{ Versus number of conditions in Rete} \]

The approach works, but increases the combinatorics over the simple mapping
Ensuring Rule Matches

- The stretched factor graph generates appropriate bindings for action variables, but doesn’t guarantee all of the conditions actually match working memory
 - E.g., a condition that is all constants may not match, yet all of the variables in the actions will be instantiated from other conditions that do successfully match
 - Messages communicate information about variable values rather than acting as triggers, as instantiations do in Rete

- Add a new production variable in every condition factor to compute product of all condition matches
 - Not actually needed in Soar because of guaranteed linkage among variables, but may be needed in general
Matching Rule Example

P1: Inherit Color

C1: (X ^color Y)

C2: (<v0> ^type <v1>)

-->

A1: (<v0> ^color <v1>)

\[
P_1(wm,v_0,v_1) = E(wm)C_1(wm)C_2(v_0,v_1,wm)A_1(v_0,v_1,wm)
\]
Matching Rule Example

\[P_1(wm, v_0, v_1, v_m) = E(wm)C_1(v_m, wm)C_2(v_0, v_1, v_m, wm)A_1(v_0, v_1, v_m, wm) \]
Message (& WM) Size Problem

- Solutions to binding confusion and rule matching increase number of rule variables processed at variable nodes
 - Yields exponential growth in message size and processing cost
- WM may itself be quite large: max-symbols
- Need to take advantage of the tendency towards uniform values in order to reduce size and processing cost
 - Both WM and messages are nearly all 0 or 1
- Solution: A hierarchical approach to nested region specification
Hierarchical Memories and Messages

- N dimensional generalization of quad/octrees (*exptrees*)
 - If entire space has one value, just assign it to the region
 - Otherwise partition space into 2^N regions at next level, and recur
- Views WM (and messages) as piece-wise constant functions
 - Could also conceivably be extended to piecewise linear functions
 - Natural compact representation for probabilities, signals, images, etc.
- Could alternatively do more adaptive partitioning that clusters/reorders points into regions based on patterns in the data
Example Match Times

PI: Inherit Color
 C1: (<v0> ^type <v1>)
 C2: (<v1> ^color <v2>)
 -->
 A1: (<v0> ^color <v2>)

With solutions to all four problems, rule graph comprises 8 factor nodes and 8 variable nodes.

WM is 16^3 in size, with 4 wmes

<table>
<thead>
<tr>
<th></th>
<th>Product before Sum</th>
<th>Redistribute P over S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrays</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exceeded heap space</td>
<td>1.7 sec.</td>
<td>~7</td>
</tr>
<tr>
<td>132 sec.</td>
<td>.25 sec.</td>
<td>~500</td>
</tr>
<tr>
<td>Hierarchies</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Paul S. Rosenbloom 5/27/09
Implementing Soar’s Elaboration Phase via Alchemy (Markov logic)

Markov logic = First order logic + Markov networks
- Node for each ground predicate
- Weight for each ground clause (clique potentials)
 - Along with links among all nodes in ground clause

Goals for implementation
- Explore a *mixed* elaboration phase (rules & probabilities)
- Enable bidirectional message flow across rules
 - Normal elaboration cycle only propagates information forward
 - But need bidirectional settling across elaboration cycles and *trellises*
- Explore semantic (fact) memory and trellises
Encoding

- Convert productions into logical implications
 - Define types for objects and values of triples
 - colors={Red, Blue, Green} and objects = {A, B, C, D, E, F}
 - Define predicates for attributes
 - Color(objects, colors) and Type(objects, objects)
 - Specify implications/clauses for rules
 - (Type(v0, v1) ^ Color(v1, v2)) => Color(v0, v2).
 - Add weights to clauses as appropriate

- Initialize database file with WM
 - Color(C, Red), Color(D, Blue), Type(A, C), Type(B, D)
 - Semantic memory: weighted ground predicates: 10 Color(F, Green)

- Trellis: define via a pair of implications (accept & reject prefs.)
 - Size(step, size) => Size(step+1, size*2).
 - (Size(step, size1) ^ size1!=size2) => !Size(step, size2).
Results

- Mapping basically works (modulo trellis strangeness)
 - Mixed representation with simple semantic memory and trellises
- Match occurs via graph compilation not message propagation
 - As Alchemy compiles first-order clauses to ground network
 - All symbolic reasoning in compilation and probabilistic in propagation?
 - Falls short of uniform processing in the graph itself
- Use of exptrees is analogous to Alchemy’s laziness and lifting
 - Deal with both default values and elements that can be processed in the same way
 - Exptrees may be cruder, but extension to piecewise linear functions is intriguing for dealing with continuous quantities
Speculations from Mapping to System Levels

- If Alchemy maps onto Soar’s elaboration phase – and ultimately its full decision cycle – then:
 - Soar’s decision cycle needs to be expanded to three phases
 1. Compile/match to generate a ground/instantiated network
 2. Perform probabilistic inference in the ground network
 3. Decide
 - Perhaps systems like Alchemy should not seek global minima
 - Elaboration Cycle (10 ms): Local propagation of information
 - Decision Cycle (100 ms): Global propagation but local minima
 - Problem Space Search (≥ 1 sec): Global minima (via sequence of locals)
 - Global processing should not happen within the elaboration cycle
 - Creating unique identifiers in rules, non-monotonic processing, etc.
 - Raises questions about extent to which WM should be global as well
Conclusion

- Despite increasing diversity within cognitive architectures, there is still hope for uniformity in the cognitive hierarchy
 - The narrow waist in the cognitive hourglass
- Uniformity at the implementation level should facilitate:
 - Exploring, understanding and improving existing architectures
 - Developing novel architectures with increased elegance and functionality
- Factor graphs (and graphical models in general) promise to yield a wide diversity of capabilities in a uniform manner
 - Mixed, hybrid and neural processing
 - Procedural and declarative (semantic/episodic) memories
- Initial progress made, but much more still to be done
 - Complete reimplementation and extension of Soar
 - Reexamine other cognitive architectures and hybrids among them
 - Experiment with radically new architectures enabled by graphical models