

*** Draft Submitted to AAAI10 Special Track on Integrated Intelligence on 1/15/10. ***
*** Not for quotation or distribution. ***

An Integrated Implementation of Rule, Semantic, Episodic and

Constraint Memories via Factor Graphs and a Bayesian Decision Cycle

Paul S. Rosenbloom

Department of Computer Science & Institute for Creative Technologies
University of Southern California

13274 Fiji Way, Marina del Rey, CA 90292
rosenbloom@usc.edu

Abstract
The raison d’être of cognitive architectures is to implement
and integrate the set of capabilities required for intelligent
behavior. This dual task is approached here by harmonizing
diversity and uniformity; using factor graphs to uniformly
provide broad functionality, a Bayesian decision cycle as a
unifying construct across diverse memories, and a hybrid,
mixed variant of Soar 9 as a driving application. The result
is a novel approach to integrated architectural diversity that
effectively marries simplicity with broad functionality, as
witnessed by an integrated implementation of four distinct
long-term memories, one procedural (rules) and three
declarative (semantic, episodic and constraint).

Introduction
Cognitive architectures provide a coherent integration of
mechanisms necessary for intelligent behavior, whether as
a tightly constrained model of human intelligence or a
looser model of human-level artificial intelligence. The
two key challenges in developing such models are: (1)
providing the requisite diversity of intelligent capability;
and (2) integrating this diversity into a coherent whole.
The result ideally should be a simple elegant model that
produces the full range of requisite capability. However,
simplicity and diversity are usually at odds, making it
difficult to develop architectures that meld broad
functionality with the simplicity and constraint that are not
only theoretically desirable but also critical for
architectural integrability, extensibility and maintainability.
 To resolve this diversity dilemma (Rosenbloom, 2009c),
a strategy is being explored of developing a uniform
implementation level that blends the generality needed for
diverse capabilities with the simplicity and constraint
necessary for integrated models. In turn, to drive and test
this strategy, a hybrid (combining discrete and continuous
processing), mixed (combining Boolean and Bayesian
reasoning) variant of the Soar 9 architecture (Laird 2008)
is being developed. Soar 9 combines Soar’s traditional

rule-based long-term memory, symbolic working memory,
knowledge-based decision cycle, impasse-driven
reflection, and learning by chunking with new semantic
and episodic memories; semantic, episodic and
reinforcement learning; imagery; and affective capabilities.
The goal for the hybrid, mixed variant of Soar 9 is a new
architecture that is simultaneously simpler and more
functional.
 Work to date has yielded a simpler yet more functional
hybrid, mixed elaboration phase, the portion of Soar’s
decision cycle within which parallel cycles of long-term
memory access repeat until quiescence. It is hybrid in
supporting both discrete and continuous variables and
mixed in supporting first-order probabilistic reasoning. It
also incorporates in an integrated manner four distinct
kinds of long-term memories, one procedural (rules) and
three declarative (semantic, episodic and constraint). Yet
the underlying implementation complexity is more
comparable to that of the elaboration phases in earlier
versions of Soar that were limited to accessing a symbolic
rule memory than to the elaboration phase in Soar 9 with
its additional modules for semantic and episodic memory.
 How this works is explained bottom up across three
system layers: (1) the graph layer exploits the uniform
breadth of factor graphs (Kschischang, Frey, and Loeliger
2001) to move from symbolic to hybrid, mixed processing;
(2) the memory layer uses Bayes law as a guide towards a
uniform approach to handling procedural and declarative
knowledge; and (3) the mechanism layer defines, and
integrates together, the four long-term memories. Together
these layers yield significant integrated architectural
diversity that is grounded naturally in a broadly functional
yet uniform implementation.
 Extending this approach to a full architecture raises
many additional issues for future attention, but these
interim results already strongly suggest the feasibility of
new models that are significantly more functional than
today’s best while exhibiting core complexity that is
comparable to that of much simpler models.

The Graph Layer
 Factor graphs, along with the broader class of graphical
models (Jordan 2004) that also includes Bayesian (Pearl
1988) and Markov networks, provide an intriguing
foundation for cognitive architecture because of how,
based on a single representation (e.g., factor graphs) and
reasoning algorithm (e.g., summary product), they can
produce state-of-the-art algorithms for symbol, probability
and signal processing; such as production match
algorithms (Rosenbloom 2009a), loopy belief propagation
(Pearl 1988), and hidden Markov models. This ability to
yield diversity from uniformity is key to resolving the
diversity dilemma. It is also crucial to integrating the
resulting diversity, enabling for example the demonstration
of hybrid, mixed reasoning (Gogate and Dechter 2005).
Graphical models yield a striking combination of
generality in the breadth of capabilities they can readily
effectuate, with constraint in how these capabilities can
naturally be implemented.
 Factor graphs are undirected graphical models that were
developed in coding theory for efficient computation over
multivariate functions via their decomposition into
products of reduced subfunctions. They are akin to
Markov networks, but instead of representing subfunctions
as clique potentials, factor nodes incorporate them directly
into the network. Links exist between factor nodes and
variable nodes wherever subfunctions draw on variables.
 Factor graphs are typically used to compute either
marginals on individual variables or the most likely single
(MAP) hypothesis. Both computations can be performed
via either some form of message passing or sampling.
Message passing algorithms such as summary product, the
focus here, pass messages between nodes about the values
of variables. Nodes compute outgoing messages as the
pointwise product of incoming messages, with factor nodes
also multiplying in the factor’s function and then summing
out all variables not included in the target variable node.
Although defined here via product and sum, summary
product actually works for any pair of operations defining
a commutative semi-ring, where both operations are
associative and commutative and have identity elements,
and the distributive law exists. Computing marginals
involves sum-product while MAP uses max-product.
 Rosenbloom (2009a) first proposed factor graphs as a
uniform implementation level for cognitive architecture,
and showed that they can yield a state-of-the-art production
match algorithm, a capability at the heart of Soar and other
architectures. However, this implementation was limited
to symbol processing. Factor functions were represented
as Boolean arrays, and messages among nodes were
Boolean vectors with a 1 for any potentially legal element
of the variable’s domain and a 0 elsewhere. For efficiency,
these arrays/vectors were structured as exptrees, nD
generalizations of quad/octrees that represent uniform
regions unitarily and decompose inhomogeneous regions
into subregions. Functionally, the result was a piecewise
constant (Boolean) WM representation. The algorithm
yielded correct match, with worst-case cost reduced from

exponential in conditions, as in the state-of-the-art Rete
algorithm (Forgy 1982), to exponential in treewidth.
 The key extension to the graph layer here is support for
hybrid, mixed processing. Continuous functions replace
Boolean arrays at the core of the implementation. Sum is
replaced by integration while product and max remain
unchanged. To implement this, a representation is wanted
that can compactly and accurately approximate continuous
functions of interest while enabling efficient computation
that is closed over the relevant operations. Piecewise
constant functions are efficient and closed, but yield a poor
tradeoff between compactness and accuracy. Gaussians
work well with probability densities, but are awkward for
other functions. An interesting compromise is piecewise
linear functions (PLFs). The nD space defined by the
cross product of the variables’ domains is partitioned into
rectilinear regions, with each region specifying its own
linear function over the variables (Figure 1).

y\x [0,10> [10,25> [25,50>

[0,5> 0 .2y 0

[5,15> .5x 1 .1+.2x+.4y

 PLFs are compact to the extent that large regions can be
approximated accurately by linear functions; efficient
because of the ease of computing with linear functions; and
closed under summation/integration. Technically they are
also closed under maximization, but only if the resulting
regions aren’t limited to rectilinear boundaries. If regions
could be bounded by convex polytopes (nD polygons) then
maximization would be closed. At present this is dealt
with by reapproximating the results of maximization as
new linear functions within rectilinear regions. The
product of two linear functions is quadratic in general, so
closure fails here. As with max, this is handled via
reapproximation. Too much reapproximation can degrade
accuracy, but this has not so far been an issue. Longer
term, alternatives such as piecewise log-linear/exponential
functions may improve closure while yielding a better
combination of compactness and accuracy.
 PLFs are inherently continuous in both domain and
range, yielding natural representations for signals and
probability densities. But individual domains can also be
discretized – allocating unit intervals to integral values – to
provide discrete probability distributions. Compounding
continuous and discrete domains then supports hybrid
processing. When range Booleanization – a restriction to
0/1 – is added to domain discretization, symbols ensue
(with a symbol table provided for mapping domain integers
onto symbolic labels). Compounding continuous and
Boolean ranges supports mixed processing.
 It is important to note that the summary product
algorithm remains in complete ignorance of any

Figure 1: 2D piecewise linear function (PLF).

discretization or Booleanization that might exist. It still
processes such variables as if they were continuous, thus
remaining simple and uniform across signals, probabilities
and symbols. This contrasts sharply, e.g., with how mixed
processing occurs in a system such as Alchemy, an
implementation of Markov logic that combines first-order
logic with Markov networks for first-order reasoning under
uncertainty (Domingos et al. 2006). Alchemy first
compiles input sentences expressed in a weighted first-
order logic to a ground network, with variables replaced by
all possible constant bindings, and then solves this ground
network for probabilities. In a mapping of Soar’s decision
cycle onto Alchemy, in which WM mapped onto evidence
in a database file and rules mapped onto implications, rule
match occurred during graph compilation rather than graph
solution, leading to an inhomogeneity between the
processing of symbols and probabilities that conflicts with
the uniform approach sought here (Rosenbloom 2009b).
 For a classic random variable, a message reflects the
probabilities of domain elements providing the unique
correct value, with the domain probabilities all summing to
1. For a match variable, any subset of the domain elements
may instead be correct, implying that each may vary
independently in [0,1]. Alchemy deals with this by adding
a ground node and a Boolean random variable for each
domain element. In contrast, with general factor functions,
each domain element in a message can effectively act as its
own Boolean variable whose value ranges independently in
[0,1], enabling single nodes and messages to cover all
possible bindings at once. The graph layer uses this latter
approach to enable uniform within-graph processing of
both symbols and probabilities.
 Although the graph layer can be difficult to grasp
initially for those unfamiliar with the intricacies of
graphical models, the overall implementation complexity
of summary product is comparable to that of Rete, which is
also at heart a message-passing algorithm. The only
significant increase in complexity arises in moving from
symbolic variables to continuous ones, and thus from
piecewise constant to piecewise linear functions.

The Memory Layer
The memory layer organizes graphs into a working
memory (WM) and a long-term memory (LTM), while
defining the basic representations used in both. In so doing
it engenders a Soar-like elaboration phase in which
quiescence becomes a settling of the graph. In the prior
work, the memory layer was closely modeled after Soar.
WM was specified as a factor function; in particular, a 3D
Boolean array with a 1 for every object-attribute-value
triple present and a 0 elsewhere. Rules were compiled into
graph structures and then matched via message passing in
the graph. This demonstrated a new form of symbolic
processing in graphical models – match – but yielded
neither hybrid nor mixed processing. It also lacked a clear
path towards bidirectional message passing across rules, as
needed for correct probabilistic reasoning in general graphs

and the kinds of trellises – chained repetitions of graph
structures – used in speech and elsewhere.
 In the current memory layer, WM comprises a set of nD,
continuous, piecewise linear, factor functions. This is
mostly just a natural consequence of the new graph layer,
but in addition the traditional monolithic WM becomes
partitioned into multiple local memories to avoid potential
across-variable conflicts. Since the domains of variables
can now be either numeric or symbolic, and symbols are
represented as arbitrary mappings onto integers, the
allocation of an integer to a symbol for one variable may
conflict in WM with its concurrent use as a number for
another. A solution to this problem has been adopted from
the mapping of Soar’s decision cycle onto Alchemy. Each
attribute in Soar’s representation becomes a predicate with
typed variables – e.g., the condition (<o> ^concept
<c>) becomes Concept(o,c), with o and c typed
symbolic variables over objects [O1 O2 O3] and
concepts [Walker Table Dog Human] – and each
predicate maintains its own factor function as part of WM.
 LTM is a bit more complex. The ideal would be a single
memory, with a general but simple and uniform knowledge
representation that provides the capabilities needed by the
procedural and declarative memories listed in the
introduction. What exists at this point comes close to this
ideal, but does not quite reach it. There is a single memory
with a single general representation that subsumes the non-
learning aspects of the four memories, but the complexity
of the representation still leaves something to be desired.
 The representation employed in LTM exploits the
abstraction of a Bayesian decision cycle to compound
procedural and declarative knowledge. Bayes law
computes a situation’s posterior probability given evidence
P(S|E) as a function of its prior probability P(S), the
probability of the evidence P(E), and the evidence’s
likelihood given the situation P(E|S): P(S|E) =
P(E|S)P(S)/P(E). But since P(E) is constant, this reduces to
P(S|E) = C*P(E|S)P(S). Mapping this onto Soar’s decision
cycle, based on hints from the Alchemy mapping, yields
WM at the start of a cycle as evidence (E) and WM at the
end of a cycle as the situation (S). The left side of the
equation then specifies the direct, forward, computation of
S from E; i.e., just what the existing procedural rule
knowledge does. In contrast, the right side computes the
result indirectly via likelihoods and priors. As will be
seen, this is just what is needed for declarative memory.
 Bayes law thus suggests a fundamental equivalence
between procedural and declarative knowledge –
analogous to, although not nearly as potent as, Einstein’s
equation for the equivalence between mass and energy –
with the implication that a general representation
subsuming the two sides of the equation could enable both
flavors of knowledge and so provide a uniform auto-
compatible basis for LTM diversity. Such a representation
can be based on conditionals; generalized rules comprised
of standard conditions and actions plus condacts (a
neologism) and a function. A condact behaves like a
combination of a condition and an action, matching

existing elements and generating new ones. A function
can be a probability distribution, or any other arbitrary
PLF, over a subset of variables in a conditional. For
example, given the concept predicate above, and a
predicate for objects in the current state, Figure 2 defines a
prior distribution over object O1’s concept. A condact
rather than an action is used for the concept here to enable
the prior to be overridden by evidence in WM.

 Conditions, actions and condacts are all predicate
patterns that compile into factor nodes. Match occurs for
conditions and condacts – but not actions – based on Rete-
like discrimination and join networks (Figure 3), but with
both networks implemented uniformly in the graph layer
(and a treewidth match bound). The discrimination
network computes all possible matches for its patterns via
paths from predicate WMs to pattern nodes, with
intermediate factor nodes performing constant tests.
Messages flow unidirectionally along discrimination paths
because WM/evidence is fixed during graph processing so
that reverse messages can have no effect. The join
network uses additional factors to combine matches across
patterns. It only affects bindings for condacts and actions,
not conditions. Condition and action patterns thus
maintain unidirectional connections with join nodes – to
and from join nodes, respectively – while condact
connections are bidirectional. When there is a distribution,
a factor node is added to the join network for it that links to
all of the variables over which it is defined. Distributions
can thus affect actions and condacts, but not conditions.
 Conditionals can directly encode both sides of Bayes
law, but encoding true rules implies more than just
representing the law’s left side. Distinguishing conditions
and actions from condacts is one part of this. The other
part is enabling a closed-world assumption for WM. Both
constraint and probability processing assume an open
world, where the truth of anything not mentioned is
unknown. But rules assume that anything not in
evidence/WM is false. Despite considerable effort
searching for a single semantics for unmentioned elements
usable for both forms of processing, in the end both
possibilities were provided as options. When a predicate is

defined, it is declared as either open or closed world.
Condacts are generally open world while conditions and
actions are generally closed world.
 How this memory layer realizes, and integrates together,
the four memories mentioned in the introduction, is
described in the next section. But first a subtle issue
concerning locality in the memory layer needs a brief
discussion. Several aspects of the processing of Soar’s
rules are global, including interaction with WM and
(implicit) use of negation-as-failure in negated conditions.
Yet a layered analysis of Soar derived from the Alchemy
mapping implies that rules should be restricted to local
processing, with global processing the demesne of the
decision cycle. To reflect this, pattern variables have been
added that bind to the results of conditional patterns –
whether conditions, actions or condacts – which, when
reused either within or across conditionals, cause their
associated patterns to compile to the same nodes in the
graph. This means, e.g., that the action of one conditional
can directly feed the condition of another without going
through WM. Likewise, condacts can be linked directly
across conditionals to yield chains/trellises that embody the
kind of bidirectional message passing mentioned at the top
of this section. The global WM is only accessed directly at
the beginning of the elaboration phase and changed at the
end of it. All communication within the elaboration phase
happens via shared nodes in the graph. A local form of
negated condition has also been added, based on explicit
representation of what is not in WM, rather than depending
on the global semantics of negation as failure.

The Mechanism Layer
At the mechanism layer, the uniform lower layers
implement integrated architectural diversity. To date this
has included (non-learning) variants of: (1) a rule-based
procedural memory, (2) a concept-based semantic memory,
(3) an event-based episodic memory, and (4) a constraint
memory. The distinction between procedural and
declarative memory is a familiar one in cognition, and has
been the long-term basis for architectures such as ACT-R
(Anderson 1993). The distinction between semantic and
episodic memory also has a long history (Tulving 1984),
and is reified in such architectures as Soar 9. Constraints
(Dechter 2003) are familiar and very useful declarative
structures in AI, but have not so far played a prominent
role in architecture. The original plan for this work only
included the first three memories, but constraints came
along essentially for free, so they are included here as well.

Figure 3: Factor graph for conditional in Figure 2. Factor nodes are white boxes and variable nodes are grey circles.

Figure 2: Concept prior over object O1.

CONDITIONAL ConditionPrior
 Condition: Object(s,O1)
 Condact: Concept(O1,c)

Walker Table Dog Human
.1 .3 .5 .1

 Implementing these memories via the lower layers does
not yield distinct modules with hard boundaries between
them; rather, each is defined by a set of conditionals that
combine to yield the appropriate functionality, along
possibly with substituting max for the default sum. Rule
and constraint memories are trivial to implement given
conditionals. Rule memory uses conditions and actions on
closed-world
predicates (Figure
4), while constraint
memory uses
condacts on open-
world predicates
plus a Boolean
function (Figure 5).

 Semantic memory encodes knowledge about objects in
terms of prior probabilities on concepts P(C) and
conditional probabilities of features given concepts P(F|C),
à la Anderson’s (1990) rational analysis. Feature
prediction for a new object uses conditional probabilities
backwards from its cued features along with prior concept
probabilities to compute a distribution over its concept.
This is in turn used with conditional distributions for its
uncued features to determine their predicted distributions.
The implementation involves condacts and functions.
There is one conditional for the concept prior – like the one
in Figure 2, but without the condition – and one for each
feature’s conditional distribution (Figure 6). Cues appear
as evidence in WM, and all predicates are open world.
Together with sum-product, this yields probabilistic
predictions of uncued object features from cued ones.

 In Soar 9, episodic memory retrieves the most recent
episode that best matches the cues, effectively acting as a
temporal instance-based semantic memory. It can thus
also be implemented via prior and conditional
probabilities, but with alterations for recency and retrieval

of the best individual episode rather than prediction of
likely feature values. A discrete temporal variable replaces
the concept variable, with a prior distribution that tails off
exponentially as time recedes into the past. Each feature
conditional specifies its actual values over past history.
Max-product is used to retrieve the best match given the
specified cues, the feature conditionals, and the recency
bias defined by the temporal prior.
 It turns out it is also possible to implement a form of
semantic memory in such an instance-based fashion, with
object instances represented explicitly and the concept just
another feature. With sum-product, this dynamically
computes distributions over features, but at present without
leveraging numerical relationships for (non-constant)
linear generalizations over regions. With max-product, it
instead retrieves the individual object best matching the
cues. One intriguing implication is that the causative
difference between generalization and analogy may reduce
to whether sum-product or max-product is used over an
instance-based memory. The former generalizes over all
instances, while the latter retrieves the single best instance.

But what about integration across these memories?
Conditionals by themselves enable combining procedural
and declarative capabilities within individual memory
elements. Semantic memory provides a simple example.
In addition to condacts and a function, each conditional can
also include a condition that matches multiple objects in
WM, each with their own cues. The prior then resembles
the conditional in Figure 2, but with the constant object O1
replaced by a variable. Feature conditionals resemble
Figure 6, but with the condition added and the variable
substituted (Figure 7). Like Soar 9, there can be only one
cycle of semantic memory retrieval per decision here –
because the graph must settle during retrieval – but unlike
Soar 9, features of many objects can be predicted in
parallel within this single cycle. In a similar manner, it is
possible to combine aspects of rules and constraints within
conditionals, and to have rules with probabilistic aspects.

 To integrate across the four memories implemented at
the mechanism layer requires going beyond this though, to
enable conditionals from different memories to interact.
Within the elaboration phase, shared pattern variables are
the key. The rule in Figure 8, for example, matches the
results of Figure 7’s semantic retrieval via pattern variables
and generates a new ConceptWeight predicate. This
also exploits within-conditional integration, but here in
service of across-memory integration.

To the extent that the elements of a memory can be
accessed independently of each other – as is true, e.g., of

CONDITIONAL ConceptWeight
 Condact: Concept(O1,c)[α3]
 Weight(O1,w)[α4]

w\c Walker Table …
[1,10> .01w .001w …
[10,20> .2-.01w “ …
[20,50> 0 .025-.00025w …
[50,100> “ “ …

Figure 6: Conditional probability of weight given concept.

CONDITIONAL ConceptWeightGeneral
 Condition: Object(s,o)[α5]
 Condact: Concept(o,c)[α6]
 Weight(o,w)[α7]

Figure 7: Conditional distribution for semantic memory
with condition to match objects (shown without function).

Figure 4: Transitive rule.

CONDITIONAL Transitive
 Condition: Next(a,b)
 Next(b,c)
 Action: Next(a,c)

CONDITIONAL TwoColorConstraint12
 Condact: Color(R1,c1)[α1]
 Color(R2,c2)[α2]

c1\c2 Red Blue
Red 0 1
Blue 1 0

 Figure 5: Two-color constraint between regions R1 & R2.

Pattern variables α1 & α2 connect with other constraints.

rules in a system like Soar – interaction across memories
can happen at the level of individual memory elements.
When access is a global process over a memory – such as
with the declarative memories implemented here – it only
makes sense to consider interaction among memories as a
whole, even though this is still mediated by individual
conditionals and pattern variables. Interaction among
memories can also occur across decision cycles when
changes in WM enacted by one memory on one cycle
trigger activity in another on the next.

Conclusion and Future
Previous work proposed resolving the diversity dilemma
by building diverse architectures on a uniform, graphical,
implementation level. Here, the graph layer preserves
much of what was proposed for the implementation level,
and the mechanism layer does the same for the architecture
level, but the memory layer has been slotted in between to
link these two earlier concepts. Via the memory layer, and
its abstraction of a Bayesian decision cycle, the hybrid,
mixed capability now implemented in the graph layer has
been harnessed to produce an integrated implementation of
four distinct memories, one procedural (rules) and three
declarative (semantic, episodic and constraint);
demonstrating in the process the impact of harmonizing
diversity and uniformity on integrated architectural
diversity. Although the examples are admittedly toy, they
do reveal how simple uniform LTM structures that are
capable of broad functional integration within themselves
can naturally implement, and integrate together, multiple
distinct mechanisms.
 The immediate future stratifies by layer. At the graph
layer, the push is towards improved closure and accuracy
in function approximation. At the memory layer, the focus
is on reducing the complexity of conditionals through a
deeper combination of their procedural/rule and declarative
aspects. At the mechanism layer, the emphasis is on
adding the other capabilities required for completing a
hybrid, mixed version of Soar 9. Tapping the full potential
of hybrid processing, for example, implies enabling fine-
grained interaction between perception and cognition
through direct incorporation of perception into the
elaboration phase, rather than leaving it marginalized in
peripheral processes. This should be feasible given that
today’s state-of-the-art speech and vision systems are
based on graphical models; that is, on hidden Markov
models and Markov random fields, respectively.
 Over the longer term, the applicability of this uniform
foundation for integrated architectural diversity must be

extended beyond Soar, to other existing architectures and
to the creation of radically new architectures enabled by
the unique synergies provided by graphical models.

Acknowledgements. This effort has been sponsored by the
USC Institute for Creative Technologies and the U.S.
Army Research, Development, and Engineering Command
(RDECOM). Statements and opinions expressed do not
necessarily reflect the position or the policy of the United
States Government, and no official endorsement should be
inferred. I would like to thank Bill Swartout for helpful
comments on restructuring this work for publication.

References
Anderson, J. R. 1990. The Adaptive Character of Thought.

Hillsdale, NJ: Erlbaum.
Anderson, J. R. 1993. Rules of the Mind. Erlbaum.
Dechter, R. 2003. Constraint Processing. San Francisco,

CA: Morgan Kaufmann.
Domingos, P., Kok, S., Poon, H., Richardson, M., and

Singla, P. 2006. Unifying logical and statistical AI. In
Proceedings of the 21st National Conference on
Artificial Intelligence, 2-7. AAAI Press.

Forgy, C. L. 1982. Rete: A Fast Algorithm for the Many
Pattern/Many Object Pattern Match Problem. Artificial
Intelligence 19(1): 17-37.

Gogate, V. and Dechter, R. 2005. Approximate Inference
Algorithms for Hybrid Bayesian Networks with Discrete
Constraints. In Proceedings of the 21st Conference on
Uncertainty in Artificial Intelligence, 209-216.

Jordan, M. I. 2004. Graphical models. Statistical Science
19: 140-155.

Kschischang, F. R., Frey, B. J., and Loeliger, H. 2001.
Factor graphs and the sum-product algorithm. IEEE
Transactions on Information Theory 47: 498-519.

Laird, J. E. 2008. Extending the Soar cognitive
architecture. In Artificial General Intelligence 2008:
Proceedings of the First AGI Conference. IOS Press.

Pearl, J. 1988. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. San
Francisco, CA: Morgan Kaufman.

Rosenbloom, P. S. 2009a. Towards a new cognitive
hourglass: Uniform implementation of cognitive
architecture via factor graphs. In Proceedings of the 9th
International Conference on Cognitive Modeling.

Rosenbloom, P. S. 2009b. A graphical rethinking of the
cognitive inner loop. In Proceedings of The IJCAI
International Workshop on Graph Structures for
Knowledge Representation and Reasoning.

Rosenbloom, P. S. 2009c. Towards uniform
implementation of architectural diversity. In
Proceedings of the AAAI Fall Symposium on Multi-
Representational Architectures for Human-Level
Intelligence, 32-33.

Tulving, E. 1984. Precis of Elements of Episodic Memory.
Behavioural and Brain Sciences 7: 223 – 268.

CONDITIONAL ConceptWeightRule
 Condition: Object(s,o)[α5]
 Condact: Concept(o,c)[α6]
 Weight(o,w)[α7]
 Action: ConceptWeight(c,w)

Figure 8: Accessing result of semantic retrieval in a rule.

