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Abstract 
The raison d’être of cognitive architectures is to implement 
and integrate the set of capabilities required for intelligent 
behavior. This dual task is approached here by harmonizing 
diversity and uniformity; using factor graphs to uniformly 
provide broad functionality, a Bayesian decision cycle as a 
unifying construct across diverse memories, and a hybrid, 
mixed variant of Soar 9 as a driving application.  The result 
is a novel approach to integrated architectural diversity that 
effectively marries simplicity with broad functionality, as 
witnessed by an integrated implementation of four distinct 
long-term memories, one procedural (rules) and three 
declarative (semantic, episodic and constraint). 

Introduction 
Cognitive architectures provide a coherent integration of 
mechanisms necessary for intelligent behavior, whether as 
a tightly constrained model of human intelligence or a 
looser model of human-level artificial intelligence.  The 
two key challenges in developing such models are: (1) 
providing the requisite diversity of intelligent capability; 
and (2) integrating this diversity into a coherent whole.  
The result ideally should be a simple elegant model that 
produces the full range of requisite capability.  However, 
simplicity and diversity are usually at odds, making it 
difficult to develop architectures that meld broad 
functionality with the simplicity and constraint that are not 
only theoretically desirable but also critical for 
architectural integrability, extensibility and maintainability. 
 To resolve this diversity dilemma (Rosenbloom, 2009c), 
a strategy is being explored of developing a uniform 
implementation level that blends the generality needed for 
diverse capabilities with the simplicity and constraint 
necessary for integrated models.  In turn, to drive and test 
this strategy, a hybrid (combining discrete and continuous 
processing), mixed (combining Boolean and Bayesian 
reasoning) variant of the Soar 9 architecture (Laird 2008) 
is being developed.  Soar 9 combines Soar’s traditional 

rule-based long-term memory, symbolic working memory, 
knowledge-based decision cycle, impasse-driven 
reflection, and learning by chunking with new semantic 
and episodic memories; semantic, episodic and 
reinforcement learning; imagery; and affective capabilities.  
The goal for the hybrid, mixed variant of Soar 9 is a new 
architecture that is simultaneously simpler and more 
functional. 
 Work to date has yielded a simpler yet more functional 
hybrid, mixed elaboration phase, the portion of Soar’s 
decision cycle within which parallel cycles of long-term 
memory access repeat until quiescence.  It is hybrid in 
supporting both discrete and continuous variables and 
mixed in supporting first-order probabilistic reasoning.  It 
also incorporates in an integrated manner four distinct 
kinds of long-term memories, one procedural (rules) and 
three declarative (semantic, episodic and constraint).  Yet 
the underlying implementation complexity is more 
comparable to that of the elaboration phases in earlier 
versions of Soar that were limited to accessing a symbolic 
rule memory than to the elaboration phase in Soar 9 with 
its additional modules for semantic and episodic memory. 
 How this works is explained bottom up across three 
system layers: (1) the graph layer exploits the uniform 
breadth of factor graphs (Kschischang, Frey, and Loeliger 
2001) to move from symbolic to hybrid, mixed processing; 
(2) the memory layer uses Bayes law as a guide towards a 
uniform approach to handling procedural and declarative 
knowledge; and (3) the mechanism layer defines, and 
integrates together, the four long-term memories.  Together 
these layers yield significant integrated architectural 
diversity that is grounded naturally in a broadly functional 
yet uniform implementation. 
 Extending this approach to a full architecture raises 
many additional issues for future attention, but these 
interim results already strongly suggest the feasibility of 
new models that are significantly more functional than 
today’s best while exhibiting core complexity that is 
comparable to that of much simpler models. 



 

 

The Graph Layer 
 Factor graphs, along with the broader class of graphical 
models (Jordan 2004) that also includes Bayesian (Pearl 
1988) and Markov networks, provide an intriguing 
foundation for cognitive architecture because of how, 
based on a single representation (e.g., factor graphs) and 
reasoning algorithm (e.g., summary product), they can 
produce state-of-the-art algorithms for symbol, probability 
and signal processing; such as production match 
algorithms (Rosenbloom 2009a), loopy belief propagation 
(Pearl 1988), and hidden Markov models.  This ability to 
yield diversity from uniformity is key to resolving the 
diversity dilemma.  It is also crucial to integrating the 
resulting diversity, enabling for example the demonstration 
of hybrid, mixed reasoning (Gogate and Dechter 2005).  
Graphical models yield a striking combination of 
generality in the breadth of capabilities they can readily 
effectuate, with constraint in how these capabilities can 
naturally be implemented.  
 Factor graphs are undirected graphical models that were 
developed in coding theory for efficient computation over 
multivariate functions via their decomposition into 
products of reduced subfunctions.  They are akin to 
Markov networks, but instead of representing subfunctions 
as clique potentials, factor nodes incorporate them directly 
into the network.  Links exist between factor nodes and 
variable nodes wherever subfunctions draw on variables. 
 Factor graphs are typically used to compute either 
marginals on individual variables or the most likely single 
(MAP) hypothesis.  Both computations can be performed 
via either some form of message passing or sampling.  
Message passing algorithms such as summary product, the 
focus here, pass messages between nodes about the values 
of variables.  Nodes compute outgoing messages as the 
pointwise product of incoming messages, with factor nodes 
also multiplying in the factor’s function and then summing 
out all variables not included in the target variable node.  
Although defined here via product and sum, summary 
product actually works for any pair of operations defining 
a commutative semi-ring, where both operations are 
associative and commutative and have identity elements, 
and the distributive law exists.  Computing marginals 
involves sum-product while MAP uses max-product. 
 Rosenbloom (2009a) first proposed factor graphs as a 
uniform implementation level for cognitive architecture, 
and showed that they can yield a state-of-the-art production 
match algorithm, a capability at the heart of Soar and other 
architectures.  However, this implementation was limited 
to symbol processing.  Factor functions were represented 
as Boolean arrays, and messages among nodes were 
Boolean vectors with a 1 for any potentially legal element 
of the variable’s domain and a 0 elsewhere.  For efficiency, 
these arrays/vectors were structured as exptrees, nD 
generalizations of quad/octrees that represent uniform 
regions unitarily and decompose inhomogeneous regions 
into subregions.  Functionally, the result was a piecewise 
constant (Boolean) WM representation.  The algorithm 
yielded correct match, with worst-case cost reduced from 

exponential in conditions, as in the state-of-the-art Rete 
algorithm (Forgy 1982), to exponential in treewidth. 
 The key extension to the graph layer here is support for 
hybrid, mixed processing.  Continuous functions replace 
Boolean arrays at the core of the implementation.  Sum is 
replaced by integration while product and max remain 
unchanged.  To implement this, a representation is wanted 
that can compactly and accurately approximate continuous 
functions of interest while enabling efficient computation 
that is closed over the relevant operations.  Piecewise 
constant functions are efficient and closed, but yield a poor 
tradeoff between compactness and accuracy. Gaussians 
work well with probability densities, but are awkward for 
other functions.  An interesting compromise is piecewise 
linear functions (PLFs).  The nD space defined by the 
cross product of the variables’ domains is partitioned into 
rectilinear regions, with each region specifying its own 
linear function over the variables (Figure 1). 
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 PLFs are compact to the extent that large regions can be 
approximated accurately by linear functions; efficient 
because of the ease of computing with linear functions; and 
closed under summation/integration.  Technically they are 
also closed under maximization, but only if the resulting 
regions aren’t limited to rectilinear boundaries.  If regions 
could be bounded by convex polytopes (nD polygons) then 
maximization would be closed.  At present this is dealt 
with by reapproximating the results of maximization as 
new linear functions within rectilinear regions.  The 
product of two linear functions is quadratic in general, so 
closure fails here.  As with max, this is handled via 
reapproximation.  Too much reapproximation can degrade 
accuracy, but this has not so far been an issue.  Longer 
term, alternatives such as piecewise log-linear/exponential 
functions may improve closure while yielding a better 
combination of compactness and accuracy. 
 PLFs are inherently continuous in both domain and 
range, yielding natural representations for signals and 
probability densities.  But individual domains can also be 
discretized – allocating unit intervals to integral values – to 
provide discrete probability distributions.  Compounding 
continuous and discrete domains then supports hybrid 
processing.  When range Booleanization – a restriction to 
0/1 – is added to domain discretization, symbols ensue 
(with a symbol table provided for mapping domain integers 
onto symbolic labels). Compounding continuous and 
Boolean ranges supports mixed processing. 
 It is important to note that the summary product 
algorithm remains in complete ignorance of any 

Figure 1: 2D piecewise linear function (PLF). 



 

 

discretization or Booleanization that might exist.  It still 
processes such variables as if they were continuous, thus 
remaining simple and uniform across signals, probabilities 
and symbols.  This contrasts sharply, e.g., with how mixed 
processing occurs in a system such as Alchemy, an 
implementation of Markov logic that combines first-order 
logic with Markov networks for first-order reasoning under 
uncertainty (Domingos et al. 2006).  Alchemy first 
compiles input sentences expressed in a weighted first-
order logic to a ground network, with variables replaced by 
all possible constant bindings, and then solves this ground 
network for probabilities.  In a mapping of Soar’s decision 
cycle onto Alchemy, in which WM mapped onto evidence 
in a database file and rules mapped onto implications, rule 
match occurred during graph compilation rather than graph 
solution, leading to an inhomogeneity between the 
processing of symbols and probabilities that conflicts with 
the uniform approach sought here (Rosenbloom 2009b). 
 For a classic random variable, a message reflects the 
probabilities of domain elements providing the unique 
correct value, with the domain probabilities all summing to 
1.  For a match variable, any subset of the domain elements 
may instead be correct, implying that each may vary 
independently in [0,1].  Alchemy deals with this by adding 
a ground node and a Boolean random variable for each 
domain element.  In contrast, with general factor functions, 
each domain element in a message can effectively act as its 
own Boolean variable whose value ranges independently in 
[0,1], enabling single nodes and messages to cover all 
possible bindings at once.  The graph layer uses this latter 
approach to enable uniform within-graph processing of 
both symbols and probabilities. 
 Although the graph layer can be difficult to grasp 
initially for those unfamiliar with the intricacies of 
graphical models, the overall implementation complexity 
of summary product is comparable to that of Rete, which is 
also at heart a message-passing algorithm.  The only 
significant increase in complexity arises in moving from 
symbolic variables to continuous ones, and thus from 
piecewise constant to piecewise linear functions. 

The Memory Layer 
The memory layer organizes graphs into a working 
memory (WM) and a long-term memory (LTM), while 
defining the basic representations used in both.  In so doing 
it engenders a Soar-like elaboration phase in which 
quiescence becomes a settling of the graph.  In the prior 
work, the memory layer was closely modeled after Soar.  
WM was specified as a factor function; in particular, a 3D 
Boolean array with a 1 for every object-attribute-value 
triple present and a 0 elsewhere.  Rules were compiled into 
graph structures and then matched via message passing in 
the graph.  This demonstrated a new form of symbolic 
processing in graphical models – match – but yielded 
neither hybrid nor mixed processing.  It also lacked a clear 
path towards bidirectional message passing across rules, as 
needed for correct probabilistic reasoning in general graphs 

and the kinds of trellises – chained repetitions of graph 
structures – used in speech and elsewhere. 
 In the current memory layer, WM comprises a set of nD, 
continuous, piecewise linear, factor functions.  This is 
mostly just a natural consequence of the new graph layer, 
but in addition the traditional monolithic WM becomes 
partitioned into multiple local memories to avoid potential 
across-variable conflicts.  Since the domains of variables 
can now be either numeric or symbolic, and symbols are 
represented as arbitrary mappings onto integers, the 
allocation of an integer to a symbol for one variable may 
conflict in WM with its concurrent use as a number for 
another.  A solution to this problem has been adopted from 
the mapping of Soar’s decision cycle onto Alchemy.  Each 
attribute in Soar’s representation becomes a predicate with 
typed variables – e.g., the condition (<o> ^concept 
<c>) becomes Concept(o,c), with o and c typed 
symbolic variables over objects [O1 O2 O3] and 
concepts [Walker Table Dog Human] – and each 
predicate maintains its own factor function as part of WM. 
 LTM is a bit more complex.  The ideal would be a single 
memory, with a general but simple and uniform knowledge 
representation that provides the capabilities needed by the 
procedural and declarative memories listed in the 
introduction.  What exists at this point comes close to this 
ideal, but does not quite reach it.  There is a single memory 
with a single general representation that subsumes the non-
learning aspects of the four memories, but the complexity 
of the representation still leaves something to be desired. 
 The representation employed in LTM exploits the 
abstraction of a Bayesian decision cycle to compound 
procedural and declarative knowledge.  Bayes law 
computes a situation’s posterior probability given evidence 
P(S|E) as a function of its prior probability P(S), the 
probability of the evidence P(E), and the evidence’s 
likelihood given the situation P(E|S): P(S|E) = 
P(E|S)P(S)/P(E).  But since P(E) is constant, this reduces to 
P(S|E) = C*P(E|S)P(S).  Mapping this onto Soar’s decision 
cycle, based on hints from the Alchemy mapping, yields 
WM at the start of a cycle as evidence (E) and WM at the 
end of a cycle as the situation (S).  The left side of the 
equation then specifies the direct, forward, computation of 
S from E; i.e., just what the existing procedural rule 
knowledge does.  In contrast, the right side computes the 
result indirectly via likelihoods and priors.  As will be 
seen, this is just what is needed for declarative memory. 
 Bayes law thus suggests a fundamental equivalence 
between procedural and declarative knowledge – 
analogous to, although not nearly as potent as, Einstein’s 
equation for the equivalence between mass and energy – 
with the implication that a general representation 
subsuming the two sides of the equation could enable both 
flavors of knowledge and so provide a uniform auto-
compatible basis for LTM diversity.  Such a representation 
can be based on conditionals; generalized rules comprised 
of standard conditions and actions plus condacts (a 
neologism) and a function.  A condact behaves like a 
combination of a condition and an action, matching 



 

 

existing elements and generating new ones.  A function 
can be a probability distribution, or any other arbitrary 
PLF, over a subset of variables in a conditional.  For 
example, given the concept predicate above, and a 
predicate for objects in the current state, Figure 2 defines a 
prior distribution over object O1’s concept.  A condact 
rather than an action is used for the concept here to enable 
the prior to be overridden by evidence in WM. 

 Conditions, actions and condacts are all predicate 
patterns that compile into factor nodes.  Match occurs for 
conditions and condacts – but not actions – based on Rete-
like discrimination and join networks (Figure 3), but with 
both networks implemented uniformly in the graph layer 
(and a treewidth match bound).  The discrimination 
network computes all possible matches for its patterns via 
paths from predicate WMs to pattern nodes, with 
intermediate factor nodes performing constant tests. 
Messages flow unidirectionally along discrimination paths 
because WM/evidence is fixed during graph processing so 
that reverse messages can have no effect.  The join 
network uses additional factors to combine matches across 
patterns.  It only affects bindings for condacts and actions, 
not conditions.  Condition and action patterns thus 
maintain unidirectional connections with join nodes – to 
and from join nodes, respectively – while condact 
connections are bidirectional.  When there is a distribution, 
a factor node is added to the join network for it that links to 
all of the variables over which it is defined.  Distributions 
can thus affect actions and condacts, but not conditions. 
 Conditionals can directly encode both sides of Bayes 
law, but encoding true rules implies more than just 
representing the law’s left side.  Distinguishing conditions 
and actions from condacts is one part of this.  The other 
part is enabling a closed-world assumption for WM.  Both 
constraint and probability processing assume an open 
world, where the truth of anything not mentioned is 
unknown.  But rules assume that anything not in 
evidence/WM is false.  Despite considerable effort 
searching for a single semantics for unmentioned elements 
usable for both forms of processing, in the end both 
possibilities were provided as options.  When a predicate is 

defined, it is declared as either open or closed world.  
Condacts are generally open world while conditions and 
actions are generally closed world. 
 How this memory layer realizes, and integrates together, 
the four memories mentioned in the introduction, is 
described in the next section.  But first a subtle issue 
concerning locality in the memory layer needs a brief 
discussion.  Several aspects of the processing of Soar’s 
rules are global, including interaction with WM and 
(implicit) use of negation-as-failure in negated conditions.  
Yet a layered analysis of Soar derived from the Alchemy 
mapping implies that rules should be restricted to local 
processing, with global processing the demesne of the 
decision cycle.  To reflect this, pattern variables have been 
added that bind to the results of conditional patterns – 
whether conditions, actions or condacts – which, when 
reused either within or across conditionals, cause their 
associated patterns to compile to the same nodes in the 
graph.  This means, e.g., that the action of one conditional 
can directly feed the condition of another without going 
through WM.  Likewise, condacts can be linked directly 
across conditionals to yield chains/trellises that embody the 
kind of bidirectional message passing mentioned at the top 
of this section.  The global WM is only accessed directly at 
the beginning of the elaboration phase and changed at the 
end of it.  All communication within the elaboration phase 
happens via shared nodes in the graph.  A local form of 
negated condition has also been added, based on explicit 
representation of what is not in WM, rather than depending 
on the global semantics of negation as failure.  

The Mechanism Layer 
At the mechanism layer, the uniform lower layers 
implement integrated architectural diversity.  To date this 
has included (non-learning) variants of: (1) a rule-based 
procedural memory, (2) a concept-based semantic memory, 
(3) an event-based episodic memory, and (4) a constraint 
memory.  The distinction between procedural and 
declarative memory is a familiar one in cognition, and has 
been the long-term basis for architectures such as ACT-R 
(Anderson 1993).  The distinction between semantic and 
episodic memory also has a long history (Tulving 1984), 
and is reified in such architectures as Soar 9.  Constraints 
(Dechter 2003) are familiar and very useful declarative 
structures in AI, but have not so far played a prominent 
role in architecture.  The original plan for this work only 
included the first three memories, but constraints came 
along essentially for free, so they are included here as well. 

Figure 3: Factor graph for conditional in Figure 2.  Factor nodes are white boxes and variable nodes are grey circles. 

Figure 2: Concept prior over object O1. 

CONDITIONAL ConditionPrior 
   Condition: Object(s,O1) 
   Condact: Concept(O1,c) 
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 Implementing these memories via the lower layers does 
not yield distinct modules with hard boundaries between 
them; rather, each is defined by a set of conditionals that 
combine to yield the appropriate functionality, along 
possibly with substituting max for the default sum.  Rule 
and constraint memories are trivial to implement given 
conditionals.  Rule memory uses conditions and actions on 
closed-world 
predicates (Figure 
4), while constraint 
memory uses 
condacts on open-
world predicates 
plus a Boolean 
function (Figure 5). 

 Semantic memory encodes knowledge about objects in 
terms of prior probabilities on concepts P(C) and 
conditional probabilities of features given concepts P(F|C), 
à la Anderson’s (1990) rational analysis.  Feature 
prediction for a new object uses conditional probabilities 
backwards from its cued features along with prior concept 
probabilities to compute a distribution over its concept.  
This is in turn used with conditional distributions for its 
uncued features to determine their predicted distributions.  
The implementation involves condacts and functions.  
There is one conditional for the concept prior – like the one 
in Figure 2, but without the condition – and one for each 
feature’s conditional distribution (Figure 6).  Cues appear 
as evidence in WM, and all predicates are open world.  
Together with sum-product, this yields probabilistic 
predictions of uncued object features from cued ones. 

 In Soar 9, episodic memory retrieves the most recent 
episode that best matches the cues, effectively acting as a 
temporal instance-based semantic memory.  It can thus 
also be implemented via prior and conditional 
probabilities, but with alterations for recency and retrieval 

of the best individual episode rather than prediction of 
likely feature values.  A discrete temporal variable replaces 
the concept variable, with a prior distribution that tails off 
exponentially as time recedes into the past.  Each feature 
conditional specifies its actual values over past history.  
Max-product is used to retrieve the best match given the 
specified cues, the feature conditionals, and the recency 
bias defined by the temporal prior. 
 It turns out it is also possible to implement a form of 
semantic memory in such an instance-based fashion, with 
object instances represented explicitly and the concept just 
another feature.  With sum-product, this dynamically 
computes distributions over features, but at present without 
leveraging numerical relationships for (non-constant) 
linear generalizations over regions. With max-product, it 
instead retrieves the individual object best matching the 
cues.  One intriguing implication is that the causative 
difference between generalization and analogy may reduce 
to whether sum-product or max-product is used over an 
instance-based memory.  The former generalizes over all 
instances, while the latter retrieves the single best instance. 

But what about integration across these memories?  
Conditionals by themselves enable combining procedural 
and declarative capabilities within individual memory 
elements.  Semantic memory provides a simple example.  
In addition to condacts and a function, each conditional can 
also include a condition that matches multiple objects in 
WM, each with their own cues.  The prior then resembles 
the conditional in Figure 2, but with the constant object O1 
replaced by a variable.  Feature conditionals resemble 
Figure 6, but with the condition added and the variable 
substituted (Figure 7). Like Soar 9, there can be only one 
cycle of semantic memory retrieval per decision here – 
because the graph must settle during retrieval – but unlike 
Soar 9, features of many objects can be predicted in 
parallel within this single cycle.  In a similar manner, it is 
possible to combine aspects of rules and constraints within 
conditionals, and to have rules with probabilistic aspects. 

 To integrate across the four memories implemented at 
the mechanism layer requires going beyond this though, to 
enable conditionals from different memories to interact.  
Within the elaboration phase, shared pattern variables are 
the key.  The rule in Figure 8, for example, matches the 
results of Figure 7’s semantic retrieval via pattern variables 
and generates a new ConceptWeight predicate.  This 
also exploits within-conditional integration, but here in 
service of across-memory integration. 

To the extent that the elements of a memory can be 
accessed independently of each other – as is true, e.g., of 

CONDITIONAL ConceptWeight 
   Condact: Concept(O1,c)[α3] 
            Weight(O1,w)[α4] 

w\c Walker Table … 
[1,10> .01w .001w … 
[10,20> .2-.01w “ … 
[20,50> 0 .025-.00025w … 
[50,100> “ “ … 
 

Figure 6: Conditional probability of weight given concept. 

CONDITIONAL ConceptWeightGeneral 
   Condition: Object(s,o)[α5] 
   Condact: Concept(o,c)[α6] 
            Weight(o,w)[α7] 

Figure 7: Conditional distribution for semantic memory 
with condition to match objects (shown without function). 

Figure 4: Transitive rule. 

CONDITIONAL Transitive 
   Condition: Next(a,b) 
              Next(b,c) 
   Action: Next(a,c) 

CONDITIONAL TwoColorConstraint12 
   Condact: Color(R1,c1)[α1] 
            Color(R2,c2)[α2] 

c1\c2 Red Blue 
Red 0 1 
Blue 1 0 

 
    Figure 5: Two-color constraint between regions R1 & R2. 

Pattern variables α1 & α2 connect with other constraints. 



 

 

rules in a system like Soar – interaction across memories 
can happen at the level of individual memory elements.  
When access is a global process over a memory – such as 
with the declarative memories implemented here – it only 
makes sense to consider interaction among memories as a 
whole, even though this is still mediated by individual 
conditionals and pattern variables.  Interaction among 
memories can also occur across decision cycles when 
changes in WM enacted by one memory on one cycle 
trigger activity in another on the next. 

Conclusion and Future 
Previous work proposed resolving the diversity dilemma 
by building diverse architectures on a uniform, graphical, 
implementation level.  Here, the graph layer preserves 
much of what was proposed for the implementation level, 
and the mechanism layer does the same for the architecture 
level, but the memory layer has been slotted in between to 
link these two earlier concepts.  Via the memory layer, and 
its abstraction of a Bayesian decision cycle, the hybrid, 
mixed capability now implemented in the graph layer has 
been harnessed to produce an integrated implementation of 
four distinct memories, one procedural (rules) and three 
declarative (semantic, episodic and constraint); 
demonstrating in the process the impact of harmonizing 
diversity and uniformity on integrated architectural 
diversity.  Although the examples are admittedly toy, they 
do reveal how simple uniform LTM structures that are 
capable of broad functional integration within themselves 
can naturally implement, and integrate together, multiple 
distinct mechanisms. 
 The immediate future stratifies by layer.  At the graph 
layer, the push is towards improved closure and accuracy 
in function approximation.  At the memory layer, the focus 
is on reducing the complexity of conditionals through a 
deeper combination of their procedural/rule and declarative 
aspects.  At the mechanism layer, the emphasis is on 
adding the other capabilities required for completing a 
hybrid, mixed version of Soar 9.  Tapping the full potential 
of hybrid processing, for example, implies enabling fine-
grained interaction between perception and cognition 
through direct incorporation of perception into the 
elaboration phase, rather than leaving it marginalized in 
peripheral processes.  This should be feasible given that 
today’s state-of-the-art speech and vision systems are 
based on graphical models; that is, on hidden Markov 
models and Markov random fields, respectively.   
 Over the longer term, the applicability of this uniform 
foundation for integrated architectural diversity must be 

extended beyond Soar, to other existing architectures and 
to the creation of radically new architectures enabled by 
the unique synergies provided by graphical models.  
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