
Factor Graphs

Continued…

Paul S. Rosenbloom
10/30/2008

Factor Graph Background
•  Tame combinatorics in many calculations

–  Decoding codes (origin of factor graphs)
–  Bayesian networks and Markov random fields
–  HMMs (and signal processing more generally)
–  Constraint propagation
–  Production match?

•  Form of divide-and-conquer with nearly decomposable
components

•  Many standard state-of-the-art algorithms can be derived
from factor graph sum-product algorithm
–  Belief propagation in Bayesian networks
–  Forward-backward algorithm in HMMs
–  Kalman filter, Viterbi algorithm, FFT, turbo decoding
–  Equivalent to distributed arc-consistency in constraint diagrams
–  Rete algorithm (or equivalent)?

Structure of Factor Graphs
•  Decompose functions into product of nearly

independent factors (or local functions)
– E.g., f(u,w,x,y,z) = f1(u,w,x)f2(x,y,z)f3(z)

•  Draw as bipartite graph
– Nodes for factors and variables
– Links between factors and their variables

f1

w

f3 f2

y

x z u

Inference in Factor Graphs
•  Reasoning occurs via message passing/propagation

–  From variable nodes to factor nodes
–  From factor nodes to variable nodes

•  Each message from one node to a second node conveys
some kind of information about the binding of a variable
based on the information the first node has received from
all of its neighbors other than the second node
–  Warning: A variable must take on a specific value

•  Simple setting of variable values
–  Belief: Weights/probabilities/potentials on domain of variable

•  This is the standard used in sum-product algorithm and Bayes nets
–  Survey: Likelihood of warning being required on domain elements

•  More effective than belief propagation
–  Typical algorithms use only one of these uniformly

Sum(mary)-Product Algorithm

•  A variable node combines the messages from all of the
factors to which it is connected (except for one to which
message is to be sent)
–  Typically by point-wise multiplication of probabilities/potentials

for each element of variable’s domain (product)

•  A factor node combines information from all of the
variable nodes to which it is connected (except for one to
which message is to be sent) plus its own function
–  Also does a point-wise product, but in addition must marginalize

out all of the variables not corresponding to the variable node to
which the message is to be sent (sum(mary))

Properties of Algorithm
•  Applicable to any pair of operations defining a

commutative semi-ring
–  Like a ring, but multiplication is commutative, and need not

have an additive inverse
–  E.g., +/*, max/*, OR/AND

•  Guaranteed to produce correct answer for polytrees
–  At most one undirected path between any two vertices

•  Reduces to evaluation of expression trees for trees in
which only care about value of root variable

•  For graphs with loops, works well iteratively in many
cases but not guaranteed to produce correct answer
–  May need to add a termination criterion as well

•  Tied to concepts in statistical mechanics
–  Minimizes the Bethe free energy

Scope of FG and BP

•  Mixed models combine Boolean and numeric
–  For example, constraints and Bayesian networks

•  Hybrid models combine discrete and continuous
•  Hybrid mixed models combine all possibilities

Symbols

Probability
(Distribution)

Signal &
Probability
(Density)

Discrete

Type of Variable Domains
Fo

rm
 o

f M
es

sa
ge

s

Numeric

Boolean

Continuous

Factor Graphs for Cognitive Architecture

•  There is work on hybrid mixed models – although still
very little and quite preliminary – but no one so far has
looked at implications for cognitive architecture

•  Idea/Hope/Fantasy: Factor graphs will provide a
uniform layer for implementing and exploring cognitive
architectures, while also pointing to novel architectures
that are more uniform, integrated and functional
–  Yielding a better understanding of architectures and their

modules/processes
–  Yielding hybrid mixed models that provide uniform integration
–  Potentially combining sequential and static reasoning

•  Dynamic hybrid mixed model (some work on this as well)
–  Generalizing STORM module interface approach

•  Rather than just setting interface variables (warnings), can send
more subtle messages about their values (beliefs, surveys)

A Research Strategy
•  Reimplement existing architectures via factor graphs
•  Look to go beyond existing architectures by

hybridization and simplification both within and across
existing architectures

•  Integrate in new capabilities that don’t fit well into
existing architectures
–  E.g., vision and speech

•  I have started by looking at Soar
–  In particular, its production system architecture

Factor Graphs for Production Systems

•  Provides a space of alternative match algorithms
–  Vary in power and complexity

•  Points in directions of (symbolic) extensions beyond
simply forward chaining of rules
–  Backward chaining
–  Abduction
–  Constraint satisfaction
–  Analogy(?)
–  Combinations of approaches

•  Provides insight in thinking about mixed models

Implemented Production System
(with some added syntactic sugar)

P1: Inherit Color
 C1: (<v0> ^type <v1>)
 C2: (<v1> ^color <v2>)
 -->
 A1: (<v0> ^color <v2>)

P1(v0,v1,v2) = C1(v0,v1)C2(v1,v2)A1(v0,v2)

C1

A1

C2

V0

V1

V2

WM

1

WM
WM (and goal constraints)
are “sneaked” into factors

Only checks arc-consistency
 Polynomial time

WM is a 3D Boolean array
 1 when triple in WM
 0 otherwise

Messages are Boolean vectors
 1 when value possible
 0 when value ruled out

Variant Production System
WM and Goal via Nodes in Graph

P1: Inherit Color
 C1: (<v0> ^type <v1>)
 C2: (<v1> ^color <v2>)
 -->
 A1: (<v0> ^color <v2>)

P1(wm,v0,v1,v2,g) =
 E(wm)C1(v0,v1,wm)C2(v1,v2,wm)A1(g,v0,v1,wm)D(g)

C1

A1

C2

V0

V1

V2

wm

g D

E

Solid arrows indicate no
messages in other direction.
Just computing deterministic
functions of fixed evidence.
Dashed arrow says to
change WM on next cycle*

Arc Consistency
P2: Path Confusion

 C1: (<v0> ^type <v1>)
 -->
 A1: (<v0> ^type2 <v1>)

P1(v0,v1) = C1(v0,v1) A1(v0,v1)

C1

A1

V0

V1

WM

1

WM:
 W1: (A ^type B)
 W2: (C ^type D)

Match yields:
 v0 = {A, C}
 v1 = {B, D}

Action yields:
 (A ^type2 B)
 (A ^type2 D)
 (C ^type2 B)
 (C ^type2 D)

Called instantiationless match in earlier work

Some Possible Solutions
•  Just live with it
•  Divide action weight among ambiguous

wmes
– E.g., each new wme set to .25 rather than 1
– Leverages potential mixed representation

represent consequences of ambiguity
•  Enforce path consistency by, e.g.

– Extracting paths after generate binding sets
–  Implementing a factor graph that directly

generates instantiations (ala Rete)
•  Other approaches?

Rete in Factor Graphs
P1: Inherit Color

 C1: (<v0> ^type <v1>)
 C2: (<v1> ^color <v2>)
 -->
 A1: (<v0> ^color <v2>)

P1(wm,v0,v1,v2,g) =
 E(wm)C1(wm,α1)C2(wm,α2) α network
 C12(α1,α2,β12)P(β12,γ1) β network
 A1(γ1,g,wm)D(g) Action (γ) network

C1

C2

α1

α2 wm E β12

P

C12

A1 γ1 g D

Comments on Rete in FG
•  Combines Rete’s α and β networks, plus actions (γ), into

a single graph structure processed in a uniform manner
•  Graph can be evaluated as an expression tree

–  Guaranteed solution with no iteration required

•  Size of extensional β messages is 3k for k conditions
–  Need to use sparse or hierarchical message structures
–  Sparse structure just sends elements that are 1 (instantiations)
–  Hierarchical structure does nested array region specification

•  E.g., start with stating that whole array is 0 and then specify which
subregions are 1, but can also then nest this further with exceptions that are
0 for subsubregions, etc.

•  Generalization over standard sparse/instantiation-based representation in
match that is more efficient when instantiations are clustered in array

•  Also transfers better to mixed case (used in some Bayes net approaches)

Beyond Forward Chaining
•  Use rule definitions in new ways

–  Backward chaining
•  Use Goal array to constrain bindings of action variables to what want and

thus indirectly constrain bindings of condition variables
•  Propagate constraint backwards by adding to goal wmes that will enable

rules to fire in forward direction

–  Hybrid forward/backward chaining
•  Unconstrained goal array yields forward chaining
•  Tightly constrained goal array yields backward chaining
•  Moderately constrained goal array yields some kind of mixed behavior

–  Abduction
•  Allow backward chaining to change WM at select times

•  Combine rule definitions with other symbolic graphs
–  Constraints are fully symmetric graphs
–  Facts and examples for declarative memory and analogy?
–  Others?

Bayesian Network (BN) Example

•  Probabilistic reasoning involves computations of
various quantities from joint probability distributions
over random variables
–  E.g., compute the marginal probability p(u) from the joint

probability distribution p(u,w,x,y,z) by summing out/over all of
the other variables

•  p(u) = SUMw,x,y,z p(u,w,x,y,z)
–  Key for tractability is to do so without having to explicitly

examine every combination of values of all of the other
variables

BN Example (cont.)
•  A Bayesian network represents a joint probability

distribution as the product of the conditional probabilities
of each random variable
–  E.g., p(u,w,x,y,z) = p(u)p(w)p(x|u,w)p(y|x)p(z|x)

•  Each conditional probability only involves a subset of the
total set of variables (its parents)
–  Each variable is conditionally independent of all of the other

variables, given its parents
•  I.e., once you know the values of the parent variables, the

probability of a value of the variable can be determined
independently of the values of all of the other variables

•  Can radically reduce scope of combinatorics

Example BN and Factor Graph
p(u,w,x,y,z) = p(u)p(w)p(x|u,w)p(y|x)p(z|x)

w

y x

z

u

z

x

y

p(z|x)

p(y|x) u

w

p(w)

p(x|u,w)

p(u)

Towards Mixed Graphs
•  Existing work combines constraints and probabilities

–  Essentially hard and soft constraints
•  Hard constraints involve probabilities of 0 and 1 only

–  Standard BP in Bayesian networks works for such mixtures, but
you can increase efficiency by preprocessing hard constraints

•  What would mixtures do in our case?
–  Extend WM to be prior distribution on contents of WM

•  Move from Boolean to numeric values in array

–  Extend rules to be conditional probabilities (CPs)?
•  CP of wmes generatable by actions given wmes bound to conditions?

–  But may not provide full parents (in Bayes net sense) if other rules can generate same wmes

•  What is connectivity among these CPs in Bayes net sense?
–  Only part of domain of an action corresponds to part of a domain of another condition
–  Can we represent whole elaboration phase as a single Bayes net (trellis)?

–  Probabilities of rules being valid/accurate?
–  What else can be supported?

•  E.g., other probabilistic information, decision-theoretic decision making,
statistical learning?

