Factor Graphs

Continued...

Paul S. Rosenbloom
10/30/2008

Factor Graph Background

Tame combinatorics in many calculations
— Decoding codes (origin of factor graphs)

— Bayesian networks and Markov random fields
— HMMSs (and signal processing more generally)
— Constraint propagation

— Production match?

Form of divide-and-conquer with nearly decomposable
components

Many standard state-of-the-art algorithms can be derived
from factor graph sum-product algorithm
— Belief propagation in Bayesian networks
— Forward-backward algorithm in HMMs
— Kalman filter, Viterbi algorithm, FFT, turbo decoding
— Equivalent to distributed arc-consistency in constraint diagrams
— Rete algorithm (or equivalent)?

Structure of Factor Graphs

 Decompose functions into product of nearly
iIndependent factors (or local functions)

- E.g., (u,w,x,y,z) = f,(u,w,x)f5(x,y,z)f3(2)
* Draw as bipartite graph
— Nodes for factors and variables
— Links between factors and their variables

w y

s 2 sl

Inference in Factor Graphs

« Reasoning occurs via message passing/propagation
— From variable nodes to factor nodes
— From factor nodes to variable nodes

« Each message from one node to a second node conveys
some kind of information about the binding of a variable
based on the information the first node has received from
all of its neighbors other than the second node

— Warning: A variable must take on a specific value
« Simple setting of variable values
— Belief: Weights/probabilities/potentials on domain of variable
« This is the standard used in sum-product algorithm and Bayes nets
— Survey: Likelihood of warning being required on domain elements
» More effective than belief propagation
— Typical algorithms use only one of these uniformly

Sum(mary)-Product Algorithm

« A variable node combines the messages from all of the
factors to which it is connected (except for one to which
message is to be sent)

— Typically by point-wise multiplication of probabilities/potentials
for each element of variable’s domain (product)

« A factor node combines information from all of the
variable nodes to which it is connected (except for one to
which message is to be sent) plus its own function

— Also does a point-wise product, but in addition must marginalize
out all of the variables not corresponding to the variable node to
which the message is to be sent (sum(mary))

Properties of Algorithm

Applicable to any pair of operations defining a
commutative semi-ring

— Like a ring, but multiplication is commutative, and need not
have an additive inverse

— E.g., +/*, max/*, OR/AND
Guaranteed to produce correct answer for polytrees
— At most one undirected path between any two vertices
Reduces to evaluation of expression trees for trees in
which only care about value of root variable

For graphs with loops, works well iteratively in many
cases but not guaranteed to produce correct answer
— May need to add a termination criterion as well

Tied to concepts in statistical mechanics

— Minimizes the Bethe free energy

Form of Messages

Scope of FG and BP

Type of Variable Domains

Discrete Continuous
Boolean Symbols
Numeric Probability P?(I)gbr:g)lilﬁy
umeri P
(Distribution) (Density)

Mixed models combine Boolean and numeric
— For example, constraints and Bayesian networks

Hybrid models combine discrete and continuous
Hybrid mixed models combine all possibilities

Factor Graphs for Cognitive Architecture

* There is work on hybrid mixed models — although still
very little and quite preliminary — but no one so far has
looked at implications for cognitive architecture

« ldea/Hope/Fantasy: Factor graphs will provide a
uniform layer for implementing and exploring cognitive
architectures, while also pointing to novel architectures
that are more uniform, integrated and functional

— Yielding a better understanding of architectures and their
modules/processes

— Yielding hybrid mixed models that provide uniform integration
— Potentially combining sequential and static reasoning
« Dynamic hybrid mixed model (some work on this as well)

— Generalizing STORM module interface approach

« Rather than just setting interface variables (warnings), can send
more subtle messages about their values (beliefs, surveys)

A Research Strategy

Reimplement existing architectures via factor graphs

Look to go beyond existing architectures by
hybridization and simplification both within and across
existing architectures

Integrate in new capabilities that don’t fit well into
existing architectures

— E.g., vision and speech

| have started by looking at Soar

— In particular, its production system architecture

Factor Graphs for Production Systems

* Provides a space of alternative match algorithms
— Vary in power and complexity
« Points in directions of (symbolic) extensions beyond
simply forward chaining of rules
— Backward chaining
— Abduction
— Constraint satisfaction
— Analogy(?)
— Combinations of approaches

* Provides insight in thinking about mixed models

Implemented Production System
(with some added syntactic sugar)

P1: Inherit Color WM is a 3D Boo_lean_ array
C1: (<v0> AMype <v1>) 1 when triple in WM
C2: (<v1> ~color <v2>) O otherwise
> Messages are Boolean vectors

1 when value possible
O when value ruled out

P1(Vo,V1,Vo) = Cy(V,V4)Co(V4, Vo)A (Vi Vo)

A1: (<v0> *color <v2>)

0 C1 -
WM (and goal constraints)

C WM are “sneaked” into factors
2

1 Only checks arc-consistency
A Polynomial time

Variant Production System
WM and Goal via Nodes in Graph

P1: Inherit Color Solid arrows indicate no
C1: (<v0> Atype <v1>) messages in other direction.
C2: (<v1> “color <v2>) Just computing deterministic
> functions of fixed evidence.
A1: (<v0> “color <v2>) Dashed arrow says to

P, (WM,V,,V,,V,,g) = change WM on next cycle”
E(wm)C,(vp,v,wm)Cy(v,, v, wm)A(9,Ve,V,,wm)D(g)

Arc Consistency

P2: Path Confusion

C1: (<v0> *Mype <v1>) WM:

W1: (A *ype B)
- W2: (C *Mype D)
A1: (<v0> Mype2 <v1>)

Match yields:

P1(Vo,v1) = Cq(vp,vy) Ag(vp,vy) v, = {A, C}
V1 = {B’ D}
WM
0 C, Action yields:
(A Mype2 B)
A ! (A Mype2 D)
1 (C Mype2 B)

(C Mype2 D)

Called instantiationless match in earlier work

Some Possible Solutions

Just live with it

Divide action weight among ambiguous
wmes

— E.g., each new wme set to .25 rather than 1

— Leverages potential mixed representation
represent consequences of ambiguity

Enforce path consistency by, e.q.
— Extracting paths after generate binding sets

— Implementing a factor graph that directly
generates instantiations (ala Rete)

Other approaches?

Rete in Factor Graphs

P1: Inherit Color
C1: (<v0> *Mype <v1>)
C2: (<v1> ~color <v2>)
-—->

A1: (<v0> *color <v2>)

P.(wm,v,v,,v,g) =

E(wm)C,(wm,a,)C,(wm,a,) o network
Ciolay,00,812)P(B12:71) B network
A,(v4,9,wm)D(g) Actlon (v) network

C,
E ‘@‘/:Cz

o —@)—> A

;@/@

Comments on Rete in FG

 Combines Rete’s a and 3 networks, plus actions (y), into
a single graph structure processed in a uniform manner

« Graph can be evaluated as an expression tree
— Guaranteed solution with no iteration required

« Size of extensional B messages is 3* for k conditions

— Need to use sparse or hierarchical message structures
— Sparse structure just sends elements that are 1 (instantiations)

— Hierarchical structure does nested array region specification

« E.g., start with stating that whole array is 0 and then specify which
subregions are 1, but can also then nest this further with exceptions that are
0 for subsubregions, etc.

« Generalization over standard sparse/instantiation-based representation in
match that is more efficient when instantiations are clustered in array

» Also transfers better to mixed case (used in some Bayes net approaches)

Beyond Forward Chaining

« Use rule definitions in new ways

— Backward chaining

» Use Goal array to constrain bindings of action variables to what want and
thus indirectly constrain bindings of condition variables

* Propagate constraint backwards by adding to goal wmes that will enable
rules to fire in forward direction

— Hybrid forward/backward chaining
» Unconstrained goal array yields forward chaining
« Tightly constrained goal array yields backward chaining
« Moderately constrained goal array yields some kind of mixed behavior

— Abduction

» Allow backward chaining to change WM at select times

« Combine rule definitions with other symbolic graphs
— Constraints are fully symmetric graphs
— Facts and examples for declarative memory and analogy?
— Others?

Bayesian Network (BN) Example

* Probabilistic reasoning involves computations of
various quantities from joint probability distributions
over random variables

— E.g., compute the marginal probability p(u) from the joint
probability distribution p(u,w,x,y,z) by summing out/over all of
the other variables

* p(u) =SUM,,, . p(u,w,x,y,z)

— Key for tractability is to do so without having to explicitly
examine every combination of values of all of the other
variables

BN Example (cont.)

« A Bayesian network represents a joint probability
distribution as the product of the conditional probabilities
of each random variable

- E.g., p(u,w,x,y,2) = p(u)p(w)p(x|u,w)p(y|x)p(z|x)
« Each conditional probability only involves a subset of the
total set of variables (its parents)

— Each variable is conditionally independent of all of the other
variables, given its parents

 |.e., once you know the values of the parent variables, the
probability of a value of the variable can be determined
independently of the values of all of the other variables

« Can radically reduce scope of combinatorics

Example BN and Factor Graph
p(u,w,x,y,z) = p(u)p(w)p(x|u,w)p(y|x)p(z|x)

p(u) y
u N\ Pxluw) p(ylx)

X
w p(z|x)

Towards Mixed Graphs

Existing work combines constraints and probabilities

— Essentially hard and soft constraints
« Hard constraints involve probabilities of 0 and 1 only

— Standard BP in Bayesian networks works for such mixtures, but
you can increase efficiency by preprocessing hard constraints

What would mixtures do in our case?
— Extend WM to be prior distribution on contents of WM

* Move from Boolean to numeric values in array

— Extend rules to be conditional probabilities (CPs)?

« CP of wmes generatable by actions given wmes bound to conditions?
— But may not provide full parents (in Bayes net sense) if other rules can generate same wmes

« What is connectivity among these CPs in Bayes net sense?
— Only part of domain of an action corresponds to part of a domain of another condition
— Can we represent whole elaboration phase as a single Bayes net (trellis)?

— Probabilities of rules being valid/accurate?

— What else can be supported?

« E.g., other probabilistic information, decision-theoretic decision making,
statistical learning?

