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Factor Graph Background 
•  Tame combinatorics in many calculations 

–  Decoding codes (origin of factor graphs) 
–  Bayesian networks and Markov random fields 
–  HMMs (and signal processing more generally) 
–  Constraint propagation 
–  Production match? 

•  Form of divide-and-conquer with nearly decomposable 
components 

•  Many standard state-of-the-art algorithms can be derived 
from factor graph sum-product algorithm 
–  Belief propagation in Bayesian networks 
–  Forward-backward algorithm in HMMs 
–  Kalman filter, Viterbi algorithm, FFT, turbo decoding 
–  Equivalent to distributed arc-consistency in constraint diagrams 
–  Rete algorithm (or equivalent)? 



Structure of Factor Graphs 
•  Decompose functions into product of nearly 

independent factors (or local functions) 
– E.g., f(u,w,x,y,z) = f1(u,w,x)f2(x,y,z)f3(z) 

•  Draw as bipartite graph 
– Nodes for factors and variables 
– Links between factors and their variables 
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Inference in Factor Graphs 
•  Reasoning occurs via message passing/propagation 

–  From variable nodes to factor nodes 
–  From factor nodes to variable nodes 

•  Each message from one node to a second node conveys 
some kind of information about the binding of a variable 
based on the information the first node has received from 
all of its neighbors other than the second node 
–  Warning: A variable must take on a specific value 

•  Simple setting of variable values 
–  Belief: Weights/probabilities/potentials on domain of variable 

•  This is the standard used in sum-product algorithm and Bayes nets 
–  Survey: Likelihood of warning being required on domain elements 

•  More effective than belief propagation 
–  Typical algorithms use only one of these uniformly 



Sum(mary)-Product Algorithm 

•  A variable node combines the messages from all of the 
factors to which it is connected (except for one to which 
message is to be sent) 
–  Typically by point-wise multiplication of probabilities/potentials 

for each element of variable’s domain (product) 

•  A factor node combines information from all of the 
variable nodes to which it is connected (except for one to 
which message is to be sent) plus its own function 
–  Also does a point-wise product, but in addition must marginalize 

out all of the variables not corresponding to the variable node to 
which the message is to be sent (sum(mary)) 



Properties of Algorithm 
•  Applicable to any pair of operations defining a 

commutative semi-ring 
–  Like a ring, but multiplication is commutative, and need not 

have an additive inverse 
–  E.g., +/*, max/*, OR/AND 

•  Guaranteed to produce correct answer for polytrees 
–  At most one undirected path between any two vertices 

•  Reduces to evaluation of expression trees for trees in 
which only care about value of root variable 

•  For graphs with loops, works well iteratively in many 
cases but not guaranteed to produce correct answer 
–  May need to add a termination criterion as well 

•  Tied to concepts in statistical mechanics 
–  Minimizes the Bethe free energy 



Scope of FG and BP 

•  Mixed models combine Boolean and numeric 
–  For example, constraints and Bayesian networks 

•  Hybrid models combine discrete and continuous 
•  Hybrid mixed models combine all possibilities 
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Factor Graphs for Cognitive Architecture 

•  There is work on hybrid mixed models – although still 
very little and quite preliminary – but no one so far has 
looked at implications for cognitive architecture 

•  Idea/Hope/Fantasy: Factor graphs will provide a 
uniform layer for implementing and exploring cognitive 
architectures, while also pointing to novel architectures 
that are more uniform, integrated and functional 
–  Yielding a better understanding of architectures and their 

modules/processes 
–  Yielding hybrid mixed models that provide uniform integration 
–  Potentially combining sequential and static reasoning 

•  Dynamic hybrid mixed model (some work on this as well) 
–  Generalizing STORM module interface approach 

•  Rather than just setting interface variables (warnings), can send 
more subtle messages about their values (beliefs, surveys) 



A Research Strategy 
•  Reimplement existing architectures via factor graphs 
•  Look to go beyond existing architectures by 

hybridization and simplification both within and across 
existing architectures 

•  Integrate in new capabilities that don’t fit well into 
existing architectures 
–  E.g., vision and speech 

•  I have started by looking at Soar 
–  In particular, its production system architecture 



Factor Graphs for Production Systems 

•  Provides a space of alternative match algorithms 
–  Vary in power and complexity 

•  Points in directions of (symbolic) extensions beyond 
simply forward chaining of rules 
–  Backward chaining 
–  Abduction 
–  Constraint satisfaction 
–  Analogy(?) 
–  Combinations of approaches 

•  Provides insight in thinking about mixed models 



Implemented Production System 
(with some added syntactic sugar) 

P1: Inherit Color 
 C1: (<v0> ^type <v1>) 
 C2: (<v1> ^color <v2>) 
 --> 
 A1: (<v0> ^color <v2>) 

P1(v0,v1,v2) = C1(v0,v1)C2(v1,v2)A1(v0,v2) 
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WM 
WM (and goal constraints) 
are “sneaked” into factors 

Only checks arc-consistency 
 Polynomial time 

WM is a 3D Boolean array 
 1 when triple in WM 
 0 otherwise 

Messages are Boolean vectors 
 1 when value possible 
 0 when value ruled out 



Variant Production System 
WM and Goal via Nodes in Graph 

P1: Inherit Color 
 C1: (<v0> ^type <v1>) 
 C2: (<v1> ^color <v2>) 
 --> 
 A1: (<v0> ^color <v2>) 

P1(wm,v0,v1,v2,g) = 
 E(wm)C1(v0,v1,wm)C2(v1,v2,wm)A1(g,v0,v1,wm)D(g) 
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Solid arrows indicate no 
messages in other direction.  
Just computing deterministic 
functions of fixed evidence. 
Dashed arrow says to 
change WM on next cycle* 



Arc Consistency 
P2: Path Confusion 

 C1: (<v0> ^type <v1>) 
 --> 
 A1: (<v0> ^type2 <v1>) 

P1(v0,v1) = C1(v0,v1) A1(v0,v1) 
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WM: 
 W1: (A ^type B) 
 W2: (C ^type D) 

Match yields: 
 v0 = {A, C} 
 v1 = {B, D} 

Action yields: 
 (A ^type2 B) 
 (A ^type2 D) 
 (C ^type2 B) 
 (C ^type2 D) 

Called instantiationless match in earlier work 



Some Possible Solutions 
•  Just live with it 
•  Divide action weight among ambiguous 

wmes 
– E.g., each new wme set to .25 rather than 1 
– Leverages potential mixed representation 

represent consequences of ambiguity 
•  Enforce path consistency by, e.g. 

– Extracting paths after generate binding sets 
–  Implementing a factor graph that directly 

generates instantiations (ala Rete) 
•  Other approaches? 



Rete in Factor Graphs 
P1: Inherit Color 

 C1: (<v0> ^type <v1>) 
 C2: (<v1> ^color <v2>) 
 --> 
 A1: (<v0> ^color <v2>) 

P1(wm,v0,v1,v2,g) = 
 E(wm)C1(wm,α1)C2(wm,α2)   α network 
 C12(α1,α2,β12)P(β12,γ1)     β network 
 A1(γ1,g,wm)D(g)     Action (γ) network 
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Comments on Rete in FG 
•  Combines Rete’s α and β networks, plus actions (γ), into 

a single graph structure processed in a uniform manner 
•  Graph can be evaluated as an expression tree 

–  Guaranteed solution with no iteration required 

•  Size of extensional β messages is 3k for k conditions 
–  Need to use sparse or hierarchical message structures 
–  Sparse structure just sends elements that are 1 (instantiations) 
–  Hierarchical structure does nested array region specification 

•  E.g., start with stating that whole array is 0 and then specify which 
subregions are 1, but can also then nest this further with exceptions that are 
0 for subsubregions, etc. 

•  Generalization over standard sparse/instantiation-based representation in 
match that is more efficient when instantiations are clustered in array 

•  Also transfers better to mixed case (used in some Bayes net approaches) 



Beyond Forward Chaining 
•  Use rule definitions in new ways 

–  Backward chaining 
•  Use Goal array to constrain bindings of action variables to what want and 

thus indirectly constrain bindings of condition variables 
•  Propagate constraint backwards by adding to goal wmes that will enable 

rules to fire in forward direction 

–  Hybrid forward/backward chaining 
•  Unconstrained goal array yields forward chaining 
•  Tightly constrained goal array yields backward chaining 
•  Moderately constrained goal array yields some kind of mixed behavior 

–  Abduction 
•  Allow backward chaining to change WM at select times 

•  Combine rule definitions with other symbolic graphs 
–  Constraints are fully symmetric graphs 
–  Facts and examples for declarative memory and analogy? 
–  Others? 



Bayesian Network (BN) Example 

•  Probabilistic reasoning involves computations of 
various quantities from joint probability distributions 
over random variables 
–  E.g., compute the marginal probability p(u) from the joint 

probability distribution p(u,w,x,y,z) by summing out/over all of 
the other variables 

•  p(u) = SUMw,x,y,z p(u,w,x,y,z) 
–  Key for tractability is to do so without having to explicitly 

examine every combination of values of all of the other 
variables 



BN Example (cont.) 
•  A Bayesian network represents a joint probability 

distribution as the product of the conditional probabilities 
of each random variable 
–  E.g., p(u,w,x,y,z) = p(u)p(w)p(x|u,w)p(y|x)p(z|x) 

•  Each conditional probability only involves a subset of the 
total set of variables (its parents) 
–  Each variable is conditionally independent of all of the other 

variables, given its parents 
•  I.e., once you know the values of the parent variables, the 

probability of a value of the variable can be determined 
independently of the values of all of the other variables 

•  Can radically reduce scope of combinatorics 



Example BN and Factor Graph 
p(u,w,x,y,z) = p(u)p(w)p(x|u,w)p(y|x)p(z|x) 
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Towards Mixed Graphs 
•  Existing work combines constraints and probabilities 

–  Essentially hard and soft constraints 
•  Hard constraints involve probabilities of 0 and 1 only 

–  Standard BP in Bayesian networks works for such mixtures, but 
you can increase efficiency by preprocessing hard constraints 

•  What would mixtures do in our case? 
–  Extend WM to be prior distribution on contents of WM 

•  Move from Boolean to numeric values in array 

–  Extend rules to be conditional probabilities (CPs)? 
•  CP of wmes generatable by actions given wmes bound to conditions? 

–  But may not provide full parents (in Bayes net sense) if other rules can generate same wmes 

•  What is connectivity among these CPs in Bayes net sense? 
–  Only part of domain of an action corresponds to part of a domain of another condition 
–  Can we represent whole elaboration phase as a single Bayes net (trellis)? 

–  Probabilities of rules being valid/accurate? 
–  What else can be supported? 

•  E.g., other probabilistic information, decision-theoretic decision making, 
statistical learning? 


